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Photoaging is skin aging caused by exposure to UV rays, which increases the 

expression of matrix metalloproteinase-1 (MMP-1). The photoaging process is 

related to the degradation of collagen types I and III in the extracellular matrix by 

MMP-1, which causes wrinkles on the skin. MMP-1 inhibitors from natural 

products have the potency as anti-photoaging. This study aims to screen the potency 

of bioactive compounds from Impatiens balsamina L. as MMP-1 inhibitors through 

in silico studies. The best test ligands were selected based on bioavailability, 

pharmacokinetics, toxicity, and molecular docking tests against the target protein 

MMP-1 (PDB ID: 1HFC) compared to that of control ligands (PLH and 

doxycycline). Peonidin, kaempferol, and pelargonidin were selected as the best test 
ligands because they accomplish the characteristics of bioavailability, 

pharmacokinetics, and toxicity. Based on molecular docking results, those test 

ligands have better binding affinity than that of control ligands, as indicated by 

rerank scores of -108.807 kcal/mol, -99.9796 kcal/mol, and -98.9128 kcal/mol, 

respectively. Those test ligands also formed the same interactions with control 

ligands at residues Ala182, Asn180, Glu219, and Leu181. The results suggest 

peonidin, kaempferol, and pelargonidin were candidates for anti-photoaging agents 

through MMP-1 inhibition. 

 

 

Introduction 

UV exposure is the main external factor that causes 
photoaging, which is characterized by the 
formation of wrinkles on the skin. Wrinkles can 
form due to collagen degradation, causing damage 
to the extracellular matrix (Pittayapruek et al., 
2016). The extracellular matrix is the main 
component of the dermis skin layer that occupies 

the intercellular space and plays a role in 
facilitating intercellular communication 
(Sparavigna, 2020). The major components of the 
extracellular matrix are collagen types I and III, 
which comprise more than 80% and 15% of the 
total collagen, respectively (Reilly and Lozano, 
2021). The main collagenolytic enzyme that plays 

a role in the degradation of collagen types I and III 
in the extracellular matrix is matrix 
metalloproteinase-1 (MMP-1). UV exposure 
increases the expression of MMP-1, which leads to 
photoaging due to the increased activity of MMP-
1 in degrading collagen types I and III in the 
extracellular matrix (Yasmeen and Gupta, 2019). 

Therefore, anti-photoaging agents are needed to 
inhibit the activity of MMP-1 in degrading 
collagen types I and III. 

In recent years, using natural ingredients with 
the potency for anti-photoaging in skin care 
products has been gaining more attention and is 
expected to continue growing (Amer et al., 2021). 
Impatiens balsamina L., commonly known as 

“Pacar Air” in Indonesia, is one of the plants with 
the potency as an anti-photoaging agent through 
inhibition of MMP-1 activity. I. balsamina L. 
contains various bioactive compounds (i.e., 
phenolic compounds, quinones, and triterpenoids) 
(Szewczyk, 2018). In vitro studies have shown that 
phenolic compounds such as apigenin, kaempferol, 

chrysin, quercetin, luteolin, and myricetin are 
known to exhibit inhibitory activity against MMP-
1 (Ronsisvalle et al., 2020). I. balsamina L. can be 
found in several regions in Indonesia as a wild or 
ornamental plant. I. balsamina L. is easy to plant 
and grows well in humid places (Utami, 2014). 
Currently, the utilization of I. balsamina L. is still 
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limited for religious activities. Therefore, 
exploring the utilization of I. balsamina L. and its 

potential activity as MMP-1 inhibitor for anti-
photoaging is necessary. 

In silico is a research method performed via 
computer simulation, thus reducing the need for 
animal models and decreasing the time and cost of 
studies (Brogi et al., 2020). In silico methods have 
been widely used to predict the potency of 

bioactive compounds through several parameters 
(such as prediction of bioavailability, 
pharmacokinetics, toxicity, and molecular 
docking) to obtain potential and non-toxic 
compounds (Shaker et al., 2021). Therefore, this 
study aimed to predict the potential of bioactive 
compounds of I. balsamina L. as anti-photoaging 

candidates through MMP-1 inhibition using in 
silico methods.  
 
Research Methods 

Materials 

This study used the 3D structure of MMP-1 (PDB 
ID: 1HFC) as the target protein, 3D structures, and 
canonical SMILES of test ligands (50 bioactive 

compounds of I. balsamina L. obtained through 
literature studies) and control ligands 
(methylamino-phenylalanyl-leucyl-hydroxamic 
acid (PLH) and doxycycline). PLH is a natural 
inhibitor of MMP-1, and doxycycline is the only 
MMP inhibitor approved by the Food and Drug 
Administration (FDA). This study also used a 

laptop with Intel ® Celeron ® N4000 CPU @ 
1.10GHz 1.10 GHz processor, 4 GB RAM, 64-bit 
Windows 10 Home Single Language operating 
system, and some software including Molegro 
Virtual Docker, and web-based applications 
including PubChem, SwissADME, pkCSM, and 
ProTox-II. 

 
Methods 

Collecting ligands and target protein 

The 3D structures and canonical SMILES of the 
test and control ligands were downloaded from the 
PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/). The 3D 
structures of ligands were saved in SDF format. In 

addition, the 3D structure of the target protein 
(MMP-1) was downloaded from the Protein Data 
Bank database (https://www.rcsb.org/) with PDB 
ID 1HFC and saved in PDB format. 
 
Bioavailability prediction 

Bioavailability prediction was performed by 

entering the canonical SMILES of the test and 
control ligands on SwissADME 

(http://www.swissadme.ch/). The parameters 
evaluated in bioavailability prediction are 

Lipinski’s rule parameters, including molecular 
weight, number of hydrogen bond acceptors, 
number of hydrogen bond donors, and 
lipophilicity. 
 
Pharmacokinetic prediction 

Pharmacokinetic prediction was performed by 

entering canonical SMILES of test and control 
ligands on pkCSM 
(https://biosig.lab.uq.edu.au/pkcsm/prediction). 
Parameters evaluated in pharmacokinetic 
prediction include intestinal absorption, skin 
permeability, VDss (The steady-state volume of 
distribution), CYP3A4 inhibitor, CYP2D6 

inhibitor, and total clearance. 
 
Toxicity prediction 

Toxicity prediction was performed by entering the 
canonical SMILES of test and control ligands on 
ProTox-II (https://tox-new.charite.de/protox_II/) 
and pkCSM. ProTox-II was used to evaluate the 
parameters of hepatotoxicity, carcinogenicity, 

immunotoxicity, cytotoxicity, and lethal dose 50 
(LD50). While pkCSM was used to evaluate the 
parameters of AMES toxicity (mutagenicity), 
maximum tolerated dose (highest dose of the 
compound without producing toxicity in the body), 
and skin sensitization. 
 

Validation of molecular docking method 

Validation was carried out by redocking the 
reference ligand (PLH) to the prepared target 
protein using Molegro Virtual Docker. The target 
protein was prepared by removing its natural ligand 
and water molecules. Validation is evaluated based 
on the root-mean-square deviation (RMSD) value 

≤ 2 Å that indicates the redocking parameters are 
acceptable and can be used in the molecular 
docking process between the test ligand and the 
target protein. 
 
Molecular docking 

Molecular docking was performed on the test 
ligands that accomplish bioavailability, 

pharmacokinetics, and toxicity parameters. All 
processes in molecular docking were performed 
using Molegro Virtual Docker. Molecular docking 
was performed by docking the test and control 
ligands to target protein and then visualizing the 
molecular docking results. Parameters evaluated in 
molecular docking include rerank score and the 

interaction between the test ligand and target 
protein. 
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Results and Discussion 

Bioavailability prediction 

Bioavailability prediction was carried out to 
determine the potential absorption of bioactive 
compounds from I. balsamina L. in the body based 
on physicochemical properties of the compounds 
evaluated using Lipinski's rule (Lipinski et al., 
2012). Based on Lipinski's rule, a bioactive 
compound should not have more than one violation 

of the parameters proposed in the rule, which are: 
molecular weight no more than 500 g/mol, the 
number of hydrogen bond donors no more than 5, 
the number of hydrogen bond acceptors no more 
than 10, and lipophilicity (log P) no more than 5 
(Lipinski et al., 2012). Lipinski's rule states that any 
compound which violates more than one of these 

parameters is more likely to have poor absorption 
(Lipinski et al., 2012). The absorption rate of the 
compounds depends on the permeability through the 
cell membrane (Kalepu et al., 2013). The absorption 
process of compounds both orally (Arivazhahan, 
2019) and non-orally (Ruela et al., 2016) through the 
skin is known to pass through the phospholipid 
bilayer of the cell membrane, which has a 

hydrophilic head and lipophilic tail. The 
bioavailability prediction results are shown in Table 
1, and the percentage of bioactive compounds that 
accomplish Lipinski's rule parameters are shown in 
Figure 1. 

Molecular weight is one of the parameters that 
can affect the absorption process of bioactive 

compounds in the body. Based on the prediction 
results, 46 test ligands (92%) have molecular weight 
less than 500 g/mol. Bioactive compounds with a 
molecular weight of not more than 500 g/mol can 
easily pass through the phospholipid bilayer and 
have good absorption potential (Ruswanto et al., 
2022). Another parameter is the number of 

hydrogen bond donors and acceptors related to 
hydrogen bonding capacity. Based on the prediction 

results, 39 test ligands (78%) have no more than 5 
hydrogen bond donors, and 43 test ligands (86%) 

have no more than 10 hydrogen bond acceptors. 
Compounds that can form hydrogen bonds can 
increase the potential for absorption and interaction 
with their biomolecular targets. However, too high 
hydrogen bonding capacity may reduce the 
permeability of a compound to pass through the 
phospholipid bilayer because it can interact and 

form hydrogen bonds, such as with water, causing 
the compounds to have difficulty passing through 
the lipophilic region (Coimbra et al., 2021). 
Lipophilicity is a parameter that shows the ratio of 
solubility of compounds in organic solvents 
(octanol) and water determined from the logarithm 
of the partition coefficient (log P) (Lipinski et al., 

2012). Based on the prediction results, 36 test 
ligands (72%) have a log P value of less than 5. 
Compounds with high lipophilicity (log P > 5) tend 
to have poor solubility in the aqueous phase and can 
be retained longer in the phospholipid bilayer. In 
addition, compounds with low lipophilicity (a 
negative log P) indicate that the molecule is 
hydrophilic, which makes it more difficult to pass 

through the phospholipid bilayer (Ruswanto et al., 
2022). Thus, the process of passing through the 
phospholipid bilayer is disrupted, causing the 
bioactive compounds to be poorly absorbed and 
have low bioavailability. Therefore, a compound is 
not expected to have lipophilicity properties that are 
too high (log P > 5) or too low (a negative log P). 

The bioavailability prediction results show that 
most of the bioactive compounds of I. balsamina. L 
are predicted to have good bioavailability. A total of 
41 test ligands are known to accomplish 3 to 4 
parameters of Lipinski's rule as expected. These test 
ligands also showed better bioavailability potential 
than the control ligand doxycycline, which violated 

two parameters of Lipinski's rule. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Percentage of bioactive compounds from I. balsamina L. based on bioavailability parameters.  

MW = Molecular weight; HBD = Hydrogen Bond Donor; HBA = Hydrogen Bond Acceptor; and 
Log P = Lipophilicity. 
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Table 1. Bioavailability prediction results 

Bioactive Compounds 
Molecular Weight 

(g/mol) 

Hydrogen Bond 

Donor 

Hydrogen Bond 

Acceptor  

Lipophilicity (log 

P) 

PLH* 349.42 4 4 1.32 

Doxycycline* 444.43 6 9 -0.28 

Kaempferol 286.24 4 6 1.58 

Astragalin  448.38 7 11 -0.25 

Nicotiflorin  594.52 9 15 -0.73 

Asiaticalin  448.38 7 11 -0.25 

Quercetin 302.24 5 7 1.23 

Isoquercitrin  464.38 8 12 -0.25 

Rutin 610.52 10 16 -1.29 

Dihydromyricetin 320.25 6 8 0.22 

Myricetin 318.24 6 8 0.79 

Cyanidin 287.24 5 6 0.32 

Cyanidin 3-O-glucoside 484.84 8 11 -1.99 

Delphinidin 338.70 6 7 -0.98 

Malvidin 331.30 4 7 0.92 

Pelargonidin 271.24 4 5 0.93 

Pelargonidin 3-glucoside 433.39 7 10 -0.73 

Pelargonin chloride  630.98 10 15 -3.91 

Peonidin 301.27 4 6 0.97 

Gallic acid 170.12 4 5 0.21 

Gentisic acid  154.12 3 4 0.74 

p-hydroxybenzoic acid 138.12 2 3 1.05 

Protocatechuic acid  154.12 3 4 0.65 

Salicylic acid 138.12 2 3 1.24 

Syringic acid 198.17 2 5 0.99 

Vanillic acid 168.15 2 4 1.08 

Caffeic acid 180.16 3 4 0.93 

Cinnamic acid 148.16 1 2 1.79 

3-hydroxycinnamic acids 164.16 2 3 1.36 

Ferulic acid 194.18 2 4 1.36 

cis-ferulic acid 194,18 2 4 1.36 

p-coumaric acid  164.16 2 3 1.26 

cis-p-coumaric acid  164.16 2 3 1.26 

Sinapic acid 224.21 2 5 1.31 

cis-sinapic acid 224.21 2 5 1.31 

Coumarin 146.14 0 2 1.82 

Scopoletin 192.17 1 4 1.52 

Fraxidin 222.19 1 5 1.49 

2-Methoxy-1,4-

naphthoquinone 
188.18 0 3 1.43 

Lawsone  174.15 1 3 0.96 

Impatienolate 418.31 0 6 -3.14 

Balsaminolate 240.19 1 4 -1.72 

Balsaminone A 344.32 1 5 3.40 

Balsaminone B 506.46 4 10 1.60 

Hydroquinone 110.11 2 2 0.87 

Anthraquinone 208.21 0 2 2.64 

alpha-Spinasterol 412.69 1 1 6.87 

Hexahydrofarnesyl acetone 268.48 0 1 5.66 

Lauric acid 200.32 1 2 3.51 

Myristic acid 228.37 1 2 4.45 

beta-Ionone 192.30 0 1 3.22 

Phytol 296.53 1 1 6.22 

Note: * = Control ligands; Red color indicates values that do not meet the parameters of Lipinski's rule. 
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Figure 2. Percentage of bioactive compounds from I. balsamina L. based on pharmacokinetic parameters.  
IA = Intestinal Absorption; SP = Skin Permeability; VDss = Volume of Distribution; CYP3A4 = 
CYP3A4 Inhibitor; CYP2D6 = CYP2D6 Inhibitor; and TC = Total Clearance. 

 

Pharmacokinetic prediction 

Pharmacokinetic prediction was carried out to predict 
the movement of bioactive compounds from I. 
balsamina L. throughout the body, including the 
absorption, distribution, metabolism, and excretion 
(ADME) process (Roy et al., 2015). Based on 
pharmacokinetic predictions, a compound is known 
to have good pharmacokinetic properties if it 
accomplishes the ADME profile which includes an 

intestinal absorption value of more than 30%, skin 
permeability (log Kp) less than -2.5 cm/hour, VDss 
more than -0.15 log L/kg, not an inhibitor of CYP2D6 
and CYP3A4, and a high total clearance (Firdausy et 
al., 2020). The pharmacokinetic prediction results are 
shown in Table 2 and the percentage of bioactive 
compounds that accomplish pharmacokinetic 

parameters are shown in Figure 2.  
The absorption of a compound is one of the 

parameters to determine the bioactive compound’s 
potential to be absorbed into the body. The absorption 
of compounds is predicted based on intestinal 
absorption and skin permeability parameters. Based 
on the prediction results, 47 test ligands (94%) 

accomplish the intestinal absorption parameters, and 
46 test ligands (92%) accomplish the skin 
permeability parameters. A bioactive compound that 
is administered orally needs to go through the 
absorption process of the intestinal tract, which is the 
main place of oral absorption before it is distributed 
and reached the desired target and shows its 
therapeutic effect (Azman et al., 2022). In addition, 

absorption is also predicted based on skin 
permeability parameters to predict the absorption 
potential of bioactive compounds administered 
through the skin. 

Distribution is a parameter that predicts the 
passage of a drug compound through the bloodstream 
to body tissues. The distribution process can affect the 

amount of drug compound that can reach the target 
(Paul, 2019). The volume of distribution (VDss) is 

one of the important parameters in pharmacokinetic 

parameters. The VDss is a parameter that predicts the 
tendency of drug compounds to be in blood plasma 
or distributed to extravascular compartments (outside 
blood vessels) such as interstitial and intracellular 
spaces. Based on the prediction results, 28 test ligands 
(56%) accomplish the VDss parameter. Bioactive 
compounds with high log VDss values indicate 
higher compound distribution in extravascular 

compartments than in blood plasma (intravascular) 
(Chatterjee, et al., 2021). The target protein (MMP-1) 
can cause the degradation of extracellular matrix 
(ECM) components that occupy the intercellular 
space in the extravascular compartment (Sparavigna, 
2020). Based on this, a compound with a high log 
VDss value (> -0.15) is needed so that the distribution 

of the compound is higher toward the extravascular 
compartment (Chatterjee, et al., 2021). 

Metabolism is a parameter related to the 
chemical change process of compounds to become 
more hydrophilic to facilitate the removal of 
compounds from the body catalyzed by enzymes. 
Enzymes that play a role in the metabolism of 

compounds are cytochrome P-450 (CYP), which 
catalyzes the oxidation of many drug compounds that 
enter the body (Mcginnity and Grime, 2017). The two 
most abundant CYP enzymes are CYP3A4 and 
CYP2D6, which metabolize about 50% and 30% of 
compounds. Inhibition of CYP3A4 and CYP2D6 
may interfere with the metabolic process, causing 
therapeutic effects not to be achieved and leading to 

an increased risk of unexpected side effects and 
toxicity (Feltrin et al., 2020). Therefore, it is 
necessary to evaluate that the drug compound is not 
an inhibitor of CYP3A4 and CYP2D6. Based on the 
prediction results, most of the test ligands showed that 
they were not CYP3A4 (99%) and CYP2D6 (100%) 
inhibitors, and only one compound, Balsaminone A, 

showed results as a CYP3A4 inhibitor. 
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Table 2. Pharmacokinetic prediction results 

Bioactive Compounds IA SP VDss CYP3A4 CYP2D6 TC 

PLH* 55,14 -2.97 -0.54 No No 0.55 

Doxycycline* 44,52 -2.74 1.14 No No 0.22 

Kaempferol 74,29 -2.74 1.27 No No 0.48 
Astragalin  48,05 -2.74 1.44 No No 0.46 

Nicotiflorin  30,74 -2.74 1.71 No No -0.16 

Asiaticalin  48,05 -2.74 1.44 No No 0.46 

Quercetin 77,21 -2.74 1.56 No No 0.41 
Isoquercitrin  48,00 -2.74 1.85 No No 0.39 

Rutin 23,45 -2.74 1.66 No No -0.37 

Dihydromyricetin 58,92 -2.74 1.66 No No 0.28 

Myricetin 65,93 -2.74 1.32 No No 0.42 
Cyanidin 87,30 -2.74 0.95 No No 0.53 

Cyanidin 3-O-glucoside 29,93 -2.74 1.49 No No 0.55 

Delphinidin 61,92 -2.74 0.97 No No 0.57 

Malvidin 88,79 -2.74 0.76 No No 0.69 
Pelargonidin 87,29 -2.74 0.65 No No 0.58 

Pelargonidin 3-glucoside 48,35 -2.74 0.98 No No 0.56 

Pelargonin chloride  0 -2.74 0.87 No No 0.14 

Peonidin 89,16 -2.74 0.56 No No 0.63 
Gallic acid 43,37 -2.74 -1.86 No No 0.52 

Gentisic acid  80,08 -2.74 -1.52 No No 0.59 

p-hydroxybenzoic acid 83,96 -2.72 -1.56 No No 0.59 

Protocatechuic acid  71,17 -2.72 -1.30 No No 0.55 

Salicylic acid 83,89 -2.72 -1.57 No No 0.61 

Syringic acid 73,08 -2.74 -1.44 No No 0.65 
Vanillic acid 78,15 -2.73 -1.74 No No 0.63 

Caffeic acid 69,41 -2.72 -1.10 No No 0.51 

Cinnamic acid 94,83 -2.70 -1.05 No No 0.78 

3-hydroxycinnamic acids 92,86 -2.71 -1.16 No No 0.66 

Ferulic acid 93,69 -2.72 -1.37 No No 0.62 

cis-ferulic acid 93,69 -2.72 -1.37 No No 0.62 

p-coumaric acid  93,49 -2.72 -1.15 No No 0.66 
cis-p-coumaric acid  93,49 -2.72 -1.15 No No 0.66 

Sinapic acid 93,06 -2.73 -1.11 No No 0.72 

cis-sinapic acid 93,06 -2.73 -1.11 No No 0.72 

Coumarin 97,34 -1.92 -0.14 No No 0.97 

Scopoletin 95,28 -2.94 0.03 No No 0.73 

Fraxidin 95,18 -3.02 -0.06 No No 0.72 

2-Methoxy-1,4-

naphthoquinone 
97,42 -2.62 -0.06 No No 0.22 

Lawsone  93,85 -3.04 0.01 No No 0.15 

Impatienolate 54,90 -2.83 -0.34 No No 1.63 

Balsaminolate 78,51 -3.69 -0.20 No No 0.89 

Balsaminone A 95,63 -2.74 -0.77 Yes No 0.18 

Balsaminone B 67,41 -2.74 -0.97 No No 0.12 

Hydroquinone 86,86 -2.62 -0.02 No No 0.52 

Anthraquinone 99,06 -2.12 0.23 No No 0.18 

alpha-Spinasterol 94,97 -2.78 0.18 No No 0.61 

Hexahydrofarnesyl 

acetone 
93,66 -2.33 0.50 No No 1.52 

Lauric acid 93,38 -2.69 -0.63 No No 1.62 

Myristic acid 92,69 -2.71 -0.58 No No 1.69 

beta-Ionone 95,44 -1.67 0.32 No No 1.32 

Phytol 90,71 -2.58 0.47 No No 1.69 

Note: * = Control ligands; IA = Intestinal Absorption (%); SP = Skin Permeability (cm/hour); VDss = Volume of 

Distribution (log L/kg); CYP3A4 = CYP3A4 inhibitor; CYP2D6 = CYP2D6 inhibitor; and TC = Total 

clearance; Red color indicates values that do not meet the parameters. 
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Excretion is the last stage in the ADME process 
that describes the processes of removing compounds 

from the body. It can be predicted based on the total 
excretion parameter (CLtot), which is the sum of all 
the removal processes from the body (Pires et al., 
2015). The CLtot value is related to the half-life of 
the compound. The higher the CLtot value, the less 
time it takes to remove the compounds from the 
body (Bardal, et al., 2011). The control ligand 

(doxycycline) value is used as a reference to select 
the test ligands that have the potential to be well 
excreted. Based on the prediction results, 43 test 
ligands (86%) were found to have higher CLtot 
values than doxycycline. 

Thus, the pharmacokinetic prediction results 
showed that most of the bioactive compounds from 

I. balsamina L. had good absorption, distribution, 
metabolism, and excretion (ADME) potential, with 
19 test ligands accomplishing all the 

pharmacokinetic parameters. 
 

Toxicity prediction 

Toxicity prediction is carried out to predict the 
safety of a compound by evaluating the potentially 

harmful risks that can be caused to the body both 
orally and non-orally administered through the skin 
(Banerjee et al., 2018). Based on toxicity prediction, 
a compound is predicted to be non-toxic if it has a 
maximum tolerated dose (MTD) value of more than 
0.477 log mg/kg/day (Pires et al., 2015), LD50 is 
more than 2000 mg/kg because it is considered to 

have low toxicity (Morris-Schaffer and McCoy, 
2021), shows "No" results on AMES toxicity 
(mutagenicity) and skin sensitization (Pires et al., 
2015), and show "Inactive" results on 
hepatotoxicity, carcinogenicity, immunotoxicity, 
and cytotoxicity parameters (Banerjee et al., 2018). 
The toxicity prediction results are shown in Table 3 

and the percentage of bioactive compounds that 

accomplish toxicity parameters are shown in Figure 
3.  

Mutagenicity is a parameter used to identify the 
possibility of compounds that can cause genetic 
mutations. The prediction results show that 48 test 
ligands (96%) were not mutagenic. Maximum 
tolerated dose (MTD) is a parameter that estimates 
the highest dose of a compound without producing 
toxicity and causing unwanted side effects (Liu et 

al., 2016). The greater the tolerated dose level of the 
compounds, the greater the possibility of a high 
level of toxicity tolerance, which indicates that the 
bioactive compound is not too toxic (Ye et al., 
2021). Based on the prediction results, 36 test 
ligands (72%) have high MTD values, which are 
predicted to be less toxic and tolerable by the body. 

Skin sensitization is a parameter to evaluate the 
safety of a compound administered non-orally 
through the skin by evaluating the possibility of the 
bioactive compound being allergenic and irritant or 
not (Pires et al., 2015). Based on the prediction 
results, 43 test ligands (86%) did not cause skin 
sensitization. Lethal dose 50 (LD50) is a parameter 
used to evaluate the potential acute toxicity of a 

compound. Based on the LD50 parameter, 
compounds with an LD50 of less than 50 mg/kg are 
highly toxic, while compounds with an LD50 of 
more than 2000 mg/kg are low toxic (Morris-
Schaffer and McCoy, 2021). Therefore, based on the 
LD50 parameter, 29 test ligands (58%) are predicted 
to have low toxicity. Hepatotoxicity, 

carcinogenicity, immunotoxicity, and cytotoxicity 
are parameters used to evaluate the toxic properties 
of compounds that can cause impaired liver 
function, the onset of cancer in the body, harm the 
immune system, and cell damage or death (Banerjee 
et al., 2018). The findings confirmed that most of the 
test ligands are non-toxic to these parameters, 

indicated by the "inactive" results. 
 

 

 

 

 

 

 

 

 

 

Figure 3. Percentage of bioactive compounds from I. balsamina L. based on toxicity parameters. Mutagen = 
Mutagenicity; MTD = Maximum Tolerated Dose; SS = Skin Sensitization; LD50 = Lethal Dose 50; 
Hepatotoxin = Hepatotoxicity; Carcinogen = Carcinogenicity; Immunotoxin = Immunotoxicity; and 
Cytotoxin = Cytotoxicity. 
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Table 3. Toxicity prediction results 

Bioactive 

Compounds 
M MTD SS LD50 HT CG IT CT 

PLH* No 0.497 No 2287 Inactive Inactive Inactive Inactive 

Doxycycline* No 0.294 No 2240 Active Inactive Active Inactive 
Kaempferol No 0.531 No 3919 Inactive Inactive Inactive Inactive 

Astragalin  No 0.582 No 5000 Inactive Inactive Inactive Inactive 

Nicotiflorin  No 0.481 No 5000 Inactive Inactive Active Inactive 

Asiaticalin  No 0.582 No 5000 Inactive Inactive Inactive Inactive 
Quercetin No 0.499 No 159 Inactive Active Inactive Inactive 

Isoquercitrin  No 0.569 No 5000 Inactive Inactive Active Inactive 

Rutin No 0.452 No 5000 Inactive Inactive Active Inactive 

Dihydromyricetin No 0.400 No 2000 Inactive Active Inactive Inactive 
Myricetin No 0.510 No 159 Inactive Active Inactive Inactive 

Cyanidin No 0.497 No 5000 Inactive Active Inactive Inactive 

Cyanidin 3-O-

glucoside 
No 0.562 No 5000 Inactive Inactive Active Inactive 

Delphinidin No 0.503 No 5000 Inactive Inactive Inactive Inactive 

Malvidin No 0.554 No 5000 Inactive Inactive Active Inactive 

Pelargonidin No 0.501 No 3919 Inactive Inactive Inactive Inactive 

Pelargonidin 3-
glucoside 

No 0.526 No 5000 Inactive Inactive Inactive Inactive 

Pelargonin chloride  No 0.428 No 5000 Inactive Inactive Inactive Inactive 

Peonidin No 0.568 No 5000 Inactive Inactive Inactive Inactive 

Gallic acid No 0.700 No 2000 Inactive Active Inactive Inactive 
Gentisic acid  No 1.261 No 4500 Inactive Inactive Inactive Inactive 

p-hydroxybenzoic acid No 0.846 No 2200 Inactive Inactive Inactive Inactive 

Protocatechuic acid  No 0.814 No 2000 Inactive Active Inactive Inactive 

Salicylic acid No 0.610 No 1034 Active Inactive Inactive Inactive 
Syringic acid No 1.374 No 1700 Inactive Inactive Inactive Inactive 

Vanillic acid No 0.719 No 2000 Inactive Inactive Inactive Inactive 

Caffeic acid No 1.145 No 2980 Inactive Active Inactive Inactive 

Cinnamic acid No 1.110 No 2500 Active Inactive Inactive Inactive 
3-hydroxycinnamic 

acids 
No 1.232 No 2980 Inactive Active Inactive Inactive 

Ferulic acid No 1.082 No 1772 Inactive Inactive Active Inactive 

cis-ferulic acid No 1.082 No 1772 Inactive Inactive Active Inactive 
p-coumaric acid  No 1.111 No 2850 Inactive Active Inactive Inactive 

cis-p-coumaric acid  No 1.111 No 2850 Inactive Active Inactive Inactive 

Sinapic acid No 1.193 No 1772 Inactive Inactive Active Inactive 
cis-sinapic acid No 1.193 No 1772 Inactive Inactive Active Inactive 

Coumarin No 0.435 No 196 Inactive Active Inactive Active 

Scopoletin No 0.614 No 3800 Inactive Active Active Inactive 

Fraxidin No 0.647 No 3800 Inactive Inactive Active Inactive 
2-Methoxy-1,4-

naphthoquinone 
No 0.918 No 2000 Inactive Inactive Inactive Inactive 

Lawsone  No 0.976 No 8000 Inactive Inactive Inactive Inactive 

Impatienolate No -0.402 No 680 Inactive Inactive Inactive Inactive 
Balsaminolate No 0.502 No 2000 Inactive Inactive Inactive Inactive 

Balsaminone A Yes 0.339 No 450 Inactive Active Active Inactive 

Balsaminone B No 0.447 No 5000 Inactive Inactive Active Inactive 
Hydroquinone No 0.707 Yes 225 Inactive Active Inactive Inactive 

Anthraquinone Yes 0.291 Yes 5000 Inactive Inactive Inactive Inactive 

alpha-Spinasterol No -0.664 No 2000 Inactive Inactive Active Inactive 

Hexahydrofarnesyl 
acetone 

No 0.244 Yes 5000 Inactive Inactive Inactive Inactive 

Lauric acid No -0.340 Yes 900 Inactive Inactive Inactive Inactive 

Myristic acid No -0.559 Yes 900 Inactive Inactive Inactive Inactive 

beta-Ionone No 0.416 Yes 4590 Inactive Inactive Inactive Inactive 

Phytol No 0.050 Yes 5000 Inactive Inactive Inactive Inactive 

Note: * = Control ligands; M = Mutagenicity; MTD = Maximum Tolerated Dose; SS = Skin Sensitization; LD50 = Lethal 

Dose 50; HT = Hepatotoxicity; CG = Carcinogenicity; IT = Immunotoxicity; and CT = Cytotoxicity; Red color 

indicates values that do not meet the parameters. 
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Based on the toxicity prediction results, most of 
the test ligands did not show toxic properties. 

However, only 10 test ligands were predicted to be 
non-toxic in all toxicity parameters tested. The test 
ligands selected for further testing at the molecular 
docking process are the test ligands that accomplish 
bioavailability, pharmacokinetics, and toxicity 
parameters. Based on the prediction results, three 
test ligands that accomplished all parameters were 

obtained, including peonidin, kaempferol, and 
pelargonidin. Therefore, these three compounds 
have the potential to have good bioavailability, good 
pharmacokinetic properties, and are not toxic. Thus, 
they were selected as the test ligands in the 
molecular docking process to determine their 
inhibitory potential against the target protein MMP-

1. 
 
Validation of molecular docking method 

Validation was carried out to determine the binding 
site of the natural ligand to the target protein and 
evaluate the change in position or interaction of the 
ligand to the protein before and after redocking 
(Krisnayana et al., 2021). Validation is evaluated 

based on the root-mean-square deviation (RMSD) 

value, measures the deviation of atomic position 
between a reference structure and the simulated 

structure that is optimally superimposed. The 
smaller the deviations, the more stable the structure 
conformation. RMSD value depends on the number 
of rotatable bonds in the molecules. A molecule with 
more rotatable bonds has a higher RMSD value 
(Patil et al., 2021). The acceptable RMSD value in 
the validation process of molecular docking 

methods is ≤ 2 Å. The smaller the RMSD value, the 
more similar the two structures. It indicates a valid 
docking protocol and can be used for the docking 
process between the test ligand and the  target 
protein (Girsang et al., 2019). The validation results 
show that the RMSD value of natural ligand (PLH) 
re-docked on target protein (1HFC) is 1.95 Å. It is 

considered fairly good and indicates that the 
docking protocol was valid.  

Visualization of the overlay of the redocking 
ligand with the natural ligand (PLH) as the reference 
ligand is shown in Figure 4. The redocking ligand 
shows the same orientation as the reference ligand, 
apart from a shift in position. The validation results 
and docking protocols used are presented in Table 4. 

 
 

 

 

 

 

 

 

 

 

 

Figure 4. Overlays of Redocking Ligand (Yellow) with Reference Ligand (Green) at Target Protein MMP-1 
(PDB ID: 1HFC) with RMSD 1.95 Å.  

 

Table 4. Validation results of molecular docking method 

Docking Protocols Results 

Protein 1HFC 

Ligand  PLH 

Radius 15 

Cavity 46.08 

Center Coordinate X, Y, Z 25.09; 22.49; 24.03 

RMSD  1.95 Å 

Hydrogen Bond 
Ala182, Glu219, Gly179, His218, His222, Leu181, Pro238, 

Tyr240 

Hydrogen Bond Redocking Ala182, Asn180, Glu219, Gly179, Leu181, Tyr240 

Remarks: Blue color indicates the interaction at the same amino acid residue as reference ligand (PLH) before redocking. 
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The binding site radius and center coordinates 
were set, adjusting to the size of the reference ligand 

used. The redocking results showed that six amino 
acids interacting with the target protein (MMP-1) 
similar to the reference ligand through the amino acid 
residues Ala182, Asn180, Glu219, Gly179, Leu181, 
Tyr240 located in the area of the target protein 
binding site (Lee et al., 2020). The interactions were 
hydrogen bonds that had considerably strong 

interactions. Thus, the validation results are 
acceptable, and the redocking protocol can be used in 
the molecular docking process because the RMSD 
value is ≤ 2 Å. Furthermore, the redocked ligand 
shows the same binding interaction with the reference 
ligand forming hydrogen bonds with the six amino 
acid residues on the MMP-1 binding site. 

 

Molecular docking 

Molecular Docking was performed to predict the 
potential similarity of the activity of the test ligand 
with the control ligand in inhibiting the target protein 
(MMP-1). Molecular docking is evaluated based on 
the rerank score parameter and the interaction 
formed. The rerank score indicates the binding 

energy required to form a bond between the ligand 
and the target protein. The smaller rerank score 
means the less energy is needed to bind and the more 
stable the bond formed between the ligand and target 
protein so that the ligand has better potential to 
interact with the target protein (Diningrat et al., 
2021).  

Based on molecular docking, the results suggest 
that test ligands have better binding potential than 
control ligands, with the lowest rerank score owned 
by peonidin of -108.807 kcal/mol, followed by 
kaempferol at -99.9796 kcal/mol, and pelargonidin at 
-98.9128 kcal/mol, as shown in Table 5. The 
molecular docking results also predicted that the test 

ligands have similar potential activity with control 
ligands because they formed the same interaction on 
the target protein through hydrogen bonds. A ligand 
could bind to amino acid residues around the target 

protein binding site by forming interactions such as 
hydrogen bonds (Diningrat et al., 2021). The 

hydrogen bond interaction between the ligand and the 
amino acid residues on the target protein can be seen 
in Table 6. Kaempferol interacts with the target 
protein by forming hydrogen bonds at the same 
amino acid residues as the control ligands, including 
Ala182, Glu219, and Leu181 at the distance of 2.82-
3.36 Å. Pelargonidin and peonidin also form the same 

hydrogen bonds as the control ligands at residues 
Ala182, Asn180, and Leu181 at the distance of 2.73-
3.14 Å. Residues Ala182, Asn180, Glu219, and 
Leu181 are known to be residues found in the MMP-
1 binding site (Lee et al., 2020). The visualization 
result of molecular docking shows that the test 
ligands and control ligands are seen in the same 

binding cavity on the target protein, as shown in 
Figure 5. Therefore, the test ligands show the same 
ability as the control ligands in inhibiting the target 
protein MMP-1. The bond distance also affected the 
interaction between the ligand and the target protein. 
The bonds with closer distance are much stronger and 
breaking the bond will be more difficult because it 
takes much energy to break the bond. The average 

hydrogen bonds distance in ligand and protein 
complexes is generally in the range of 2.8-3.1 Å (Lee 
et al., 2020). Thus, the hydrogen bond formed 
between the test ligand and the target protein MMP-
1 is stable and has good bond strength. 

Based on in vitro research, flavonoids and 
anthocyanins contained in pomegranate powder are 

known to inhibit MMP-1 activity in UVB-induced 
human primary dermal fibroblast-neonatal (HDF) 
cells (Lee et al., 2018). Another study was also 
showed that kaempferol contained in Punica 
granatum (PG) extract is known to act as an anti-
photoaging agent by inhibiting MMP-1 expression in 
UV-irradiated cultured human skin fibroblasts 

(Folmer et al., 2014). The results of this study support 
that peonidin, kaempferol, and pelargonidin 
potentially have activity as anti-photoaging by 
inhibiting MMP-1. 

 

Table 5. Molecular docking results 

Remarks: * = Control ligands; Blue color indicates the same amino acid residue as the control ligand. 

Ligand 
Rerank score 

(kcal/mol) 
Hydrogen Bond and Distance (Å) 

PLH* -94.2573 Ala182 (3.46), Asn180 (3.41), Glu219 (3.11), Gly179 (2.73), Leu181 (2.75), 
Tyr240 (2.77) 

Doxycycline* -47.3035 Ala182 (2.21 and 3.14), Asn180 (2.90), Glu219 (2.56), Gly179 (3.10), 

His218 (3.29), Leu181 (2.80), Pro238 (2.58 and 2.52) 

Kaempferol -99.9796 Ala182 (2.83 and 2.82), Arg214 (2.64), Glu219 (3.31), Leu181 (3.36), 
Leu235 (3.40), Ser239 (2.86), Tyr237 (2.92) 

Pelargonidin -98.9128 Ala182 (2.84 and 2.73), Arg214 (3.18 and 2.78), Asn180 (3.14), 

Leu181(2.96), Leu235 (3.43), Ser239 (3.04), Tyr237 (3.07) 

Peonidin -108.807 Ala182 (2.85 and 2.73), Arg214 (3.16 and 2.77), Asn180 (3.14), Leu181 
(2.98), Leu235 (3.39), Ser239 (3.07), Tyr237 (3.07) 
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Table 6. Visualization of molecular docking 

Bioactive 

Compounds 
Visualization 3D Visualization 2D 

PLH 

  

Doxycycline 

  

Kaempferol 
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Pelargonidin 

  

Peonidin 

 
 

Remarks: Color Ligand; Color Hydrogen Bond; Color Amino Acid Residue. 

 

 

 

 

 

 

 

Figure 5. Visualization of molecular docking between ligands and target protein MMP-1 (PDB ID: 1HFC). A 
= Natural Ligand (PLH); B = Doxycycline; C = Kaempferol; D = Pelargonidin; E = Peonidin; and 
Red circles indicate the interaction position of the ligands in the binding site of the target protein 
MMP-1. 

 

Conclusions  

Peonidin, kaempferol, and pelargonidin are 
bioactive compounds of I. balsamina L. selected as 
test ligands in molecular docking prediction. These 
compounds are predicted to have good 
bioavailability and pharmacokinetic characteristics 
and not toxic. Based on molecular docking 

predictions, peonidin, kaempferol, and pelargonidin 
are predicted to have good potential in inhibiting 
MMP-1 as indicated by their lower rerank score and 
formed the same interaction compared to that of 
control ligands. Thus, these compounds could be 
developed as anti-photoaging compound 

candidates. Further research is needed to validate the 
prediction results in this study by conducting both in 
vitro and in vivo studies. 
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