Anti-inflammatory activity of hydrolysed glucomannan from porang (Amorphophallus muelleri Blume) through inhibition response of nitric oxide production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells

Mochamad Affandi, Zamnia Wahyuli, Sudarminto Setyo Yuwono, Simon Bambang Widjanarko


Few studies have been conducted on porang (Amorphophallus muelleri Blume) glucomannan (PGM) as anti-inflammatory drugs. The study aimed to evaluate the relationship between the use of sulfuric acid concentration in the hydrolysis process and the anti-inflammatory effects of PGM hydrolysates (PGMH) using the nitric oxide (NO) inhibition approach. PGMH is prepared by hydrolysing PGM with sulfuric acid (0.25N, 0.5N, and 1.0N concentration). This experimental study analysed the production of nitric oxide (NO) formation related to inflammation. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells were treated with PGM and PGMH (62.5, 125, 250, and 500 micrograms per millilitres). The cytotropic substance was measured by using the Griess reaction assay. The analysis showed that the PGM and PGMH possessed more potent NO inhibitory activity than the positive control. PGMH 1.0N treatment had the highest inhibitory potential of NO production with an IC50 value of 353.1 micrograms per milliliters. Increasing the concentration of a PGMH 1.0N was inversely proportional to the decrease in NO production. PGMH 1.0N 500 micrograms per milliliter treatment significantly suppressed the production of NO. PGM and PGMH as alternative therapies stimulate the immune system in vitro significantly. The current study might be used as a preliminary guide for choosing the best concentrations of PGMH and sulfuric acid in future studies that aim to reduce inflammation and modulate the immune system.


Amorphophallus; Anti-inflammatory; Hydrolysed glucomannan; Nitric oxide; Porang

Full Text:



Behera, S. S., and Ray, R. C. (2016) ‘Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care’, International Journal of Biological Macromolecules, 92, pp. 942–956

Bo, S., Muschin, T., Kanamoto, T., Nakashima, H., and Yoshida, T. (2013) ‘Sulfation and biological activities of konjac glucomannan’, Carbohydrate Polymers, 94(2), pp. 899–903

Bryan, N. S., and Grisham, M. B. (2007) ‘Methods to detect nitric oxide and its metabolites in biological samples’, Free Radical Biology and Medicine, 43(5), pp. 645–657

Chien, R. C., Lin, L. M., Chang, Y. H., Lin, Y. C., Wu, P. H., Asatiani, M. D., Wasser, S. G., Krakhmalnyi, M., Agbarya, A., Wasser, S. P., and Mau, J. L. (2016) ‘Anti-inflammation properties of fruiting bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms’, International Journal of Medicinal Mushrooms, 18(11), pp. 999–1009

Chien, R.-C., Yang, Y.-C., Lai, E. I., and Mau, J.-L. (2016) ‘Anti-inflammatory effects of extracts from the medicinal mushrooms Hypsizygus marmoreus and Pleurotus eryngii (Agaricomycetes)’, International Journal of Medicinal Mushrooms, 18(6), pp. 477-487

Coleman, J. W. (2001) ‘Nitric oxide in immunity and inflammation’, International Immunopharmacology, 1(8), pp. 1397–1406

De Cássia da Silveira e Sá, R., Andrade, L. N., Dos Reis Barreto de Oliveira, R., and De Sousa, D. P. (2014) ‘A Review on anti-inflammatory activity of phenylpropanoids found in essential oils’, Molecules, 19(2), pp. 1459-1480

Drira, M., Hentati, F., Babich, O., Sukhikh, S., Larina, V., Sharifian, S., Homai, A., Fendri, I., Lemos, M. F. L., Félix, C., Félix, R., Abdelkafi, S., and Michaud, P. (2021) ‘Bioactive carbohydrate polymers—between myth and reality’, Molecules, 26, pp. 1-36

Faridah, A., and Widjanarko, S. B. (2013) ‘Optimization of multilevel ethanol leaching process of porang flour (Amorphophallus muelleri) using response surface methodology’, International Journal on Advanced Science Engineering Information Technology, 3(2), pp. 74–80

Galhardo, L. F., Ruivo, G. F., de Oliveira, L. D., Parize, G., Santos, S. S. F. Dos, Pallos, D., and Leão, M. V. P. (2020) ‘Inflammatory markers in saliva for diagnosis of sepsis of hospitalizes patients’, European Journal of Clinical Investigation, 50(5), pp. e13219

Geng, Y., Zhu, S., Lu, Z., Xu, H., Shi, J. S., and Xu, Z. H. (2014) ‘Anti-inflammatory activity of mycelial extracts from medicinal mushrooms’, International Journal of Medicinal Mushrooms, 16(4), pp. 319–325

Huang, J., Gao, S., and Shen, X. (2010) ‘Konjac glucomannan nanocrystals prepared by acid hydrolysis’, E-Polymers, 10(1), pp. 1-8

Huang, K., Li, Y., Tao, S., Wei, G., Huang, Y., Chen, D., and Wu, C. (2016) ‘Purification, characterization and biological activity of polysaccharides from dendrobium officinale’, Molecules, 21, pp. 1-17

Huang, L., Shen, M., Morris, G. A., and Xie, J. (2019) ‘Sulfated polysaccharides: Immunomodulation and signaling mechanisms’, Trends in Food Science and Technology, 92, pp. 1–11

Kang, H. (2018) ‘Anti-inflammatory mechanism of Isodon japonicas (Burm) Hara on lipopolysaccharide-induced neuroinflammation’, Tropical Journal of Pharmaceutical Research, 17(1), pp. 85–89

Kröncke, K.-D., Fehsel, K., and Kolb-Bachofen, V. (1997) ‘Nitric oxide: Cytotoxicity versus cytoprotection— how, why, when, and where? Nitric Oxide, 1(2), pp. 107–120

Li, F., Sun, X., Yu, W., Shi, C., Zhang, X., Yu, H., and Ma, F. (2021) ‘Enhanced konjac glucomannan hydrolysis by lytic polysaccharide monooxygenases and generating prebiotic oligosaccharides’, Carbohydrate Polymers, 253, pp. 117241

Liao, H., Banbury, L., Liang, H., Wang, X., Lü, X., Hu, L., and Wu, J. (2014) ‘Effect of honghua (Flos Carthami) on nitric oxide production in RAW 264.7 cells and α-glucosidase activity’, Journal of Traditional Chinese Medicine, 34(3), pp. 362–368

Ma, L., Jiao, K., Luo, L., Xiang, J., Fan, J., Zhang, X., Yi, J., and Zhu, W. (2019) ‘Characterization and macrophage immunomodulatory activity of two polysaccharides from the flowers of Paeonia suffruticosa Andr’, International Journal of Biological Macromolecules, 124, pp. 955–962

Martinez-Morales, F., Alonso-Castro, A. J., Zapata-Morales, J. R., Carranza-Álvarez, C., and Aragon-Martinez, O. H. (2020) ‘Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants’, Chemical Papers, 74(10), pp. 3325–3334

Möller, M. N., Rios, N., Trujillo, M., Radi, R., Denicola, A., and Alvarez, B. (2019) ‘Detection and quantification of nitric oxide–derived oxidants in biological systems’, Journal of Biological Chemistry, 294(40), pp. 14776–14802

Nie, C., Zhu, P., Ma, S., Wang, M., and Hu, Y. (2018) ‘Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce’, Carbohydrate Polymers, 188, pp. 236–242

Onishi, N., Kawamoto, S., Suzuki, H., Santo, H., Aki, T., Shigeta, S., Hashimoto, K., Hide, M., and Ono, K. (2007) ‘Dietary pulverized konjac glucomannan suppresses scratching behavior and skin inflammatory immune responses in NC/Nga Mice’, International Archives of Allergy and Immunology, 144(2), pp. 95–104

Scherer, R., and Godoy, H. T. (2009) ‘Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method’, Food Chemistry, 112(3), pp. 654–658

Science Gateway. (2022). How to calculate IC50 [Online]. Available at (Accessed: 23 November 2022)

Suzuki, H., Oomizu, S., Yanase, Y., Onishi, N., Uchida, K., Mihara, S., Ono, K., Kameyoshi, Y., and Hide, M. (2010) ‘Hydrolyzed konjac glucomannan suppresses ige production in mice b cells’, International Archives of Allergy and Immunology, 152(2), pp. 122–130

Swinney, D. C. (2011) ‘Chapter 18 - molecular mechanism of action (MMoA) in drug discovery’, Annual Reports in Medicinal Chemistry, 46, pp. 301-317

Tan, L. H., Zhang, D., Yu, B., Zhao, S. P., Wang, J. W., Yao, L., and Cao, W. G. (2015) ‘Antioxidant activity and optimization of extraction of polysaccharide from the roots of Dipsacus asperoides’, International Journal of Biological Macromolecules, 81, pp. 332–339

Tester, R., Al-Ghazzewi, F., Shen, N., Chen, Z., Chen, F., Yang, J., Zhang, D., and Tang, M. (2012) ‘The use of konjac glucomannan hydrolysates to recover healthy microbiota in infected vaginas treated with an antifungal agent’, Beneficial Microbes, 3(1), pp. 61–66

Ulayya, A. H., Mubarok, A. Z., Widodo, W., Widjanarko, S. B., and Marlita, M. (2022) ‘The importance of natural ace2 inhibitor: potency of porang (Amorphophallus muelleri) glucomannan as anti-SARS-Cov-2’, Electronic Journal of General Medicine, 19(1), pp. 2–5

Yin, M., Zhang, Y., and Li, H. (2019) ‘Advances in research on immunoregulation of macrophages by plant polysaccharides’, Frontiers in Immunology, 10, pp. 1-9

Zheng, Q., Li, W., Liang, S., Zhang, H., Yang, H., Li, M., and Zhang, Y. (2019) ‘Effects of ultrasonic treatment on the molecular weight and anti-inflammatory activity of oxidized konjac glucomannan’, CyTA - Journal of Food, 17(1), pp. 1–10


  • There are currently no refbacks.

Copyright (c) 2023 Mochamad Affandi, Zamnia Wahyuli, Sudarminto Setyo Yuwono, Simon Bambang Widjanarko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.