Integrated and partial process of xylitol and bioethanol production from oil palm empty fruit bunches

Efri Mardawati, Budi Mandra Harahap, Emilda Ayu Febrianti, Agus Try Hartono, Natasha Putri Siahaan, Anting Wulandari, Silvia Yudiastuti, Sri Suhartini, Kasbawati Kasbawati


Oil palm empty fruit bunches (OPEFBs) are highly abundant in Indonesia and have been highlighted as a potential feedstock for bioethanol and xylitol production. However, the efficacy of the fermentation technology to convert OPEFBs to bioethanol and xylitol, either in partial (i.e. mono-production) or integrated (i.e. co-production) process, still needs further improvement. This study aimed to evaluate the partial and integrated process for xylitol and bioethanol production from OPEFBs.  In the integrated process, the remaining solid residues after xylitol extraction are used as feedstock for bioethanol due to their high cellulose compounds. This solid residue is more susceptible to be degraded by cellulase enzymes into glucose and further transformed into bioethanol. In the partial process of xylitol production, xylanase enzyme was used to hydrolyze xylan into xylose, which was then converted into xylitol using Debaryomyces hansenii. While in the partial process of bioethanol production, the hydrolysis of cellulose in the OPEFB into glucose was carried out using cellulase enzymes, followed by fermentation using Saccharomyces cerevisiae. The results show that the partial process produced xylitol yield (Yp/s) of 0.10 g-xylitol/g-xylose, while bioethanol at yield (Yp/s) of 0.32 g-bioethanol/g-glucose, respectively. The integrated process generates xylitol yield (Yp/s)of 0.298 g-xylitol/g-xylose, with bioethanol yield from the remaining solid at 0.051 g-bioethanol/g-OPEFB (or 0.078 g-bioethanol/g-glucose). These findings, therefore, confirmed that the integrated process of xylitol with bioethanol production might offer higher efficacy of OPEFB utilization into high value-added products.


Bioethanol; Enzymatic hydrolysis; Fermentation; OPEFB; Xylitol

Full Text:



Abdullah, M. A., Nazir, M. S., and Wahjoedi, B. A. (2011) ‘Development of value added biomaterials from oil palm agro-wastes’, 2nd International Conference on Biotechnology and Food science, 7, pp. 32-35

Abdullah, N., and Sulaiman, F. (2013) ‘The properties of the washed empty fruit bunches of oil palm’, Journal of Physical Science, 24(2), pp. 117–137

Adney, B., and Baker, J. (2008) Measurement of cellulase activities. United States: NREL

Albuquerque, T. L. D., Silva, I. J. D., Macedo, G. R. D., Rocha, M. V. P. (2014) ‘Biotechnological production of xylitol from lignocellulosic wastes: A review’, Process Biochemistry, 49(11), pp. 1779-1789

Aliberti, A., Ventorino, V., Robertiello, A., Galasso, M., Blaiotta, G., Comite, E., Faraco, V., and Pepe, O. (2017) ‘Effect of cellulase, substrate concentrations, and configuration processes on cellulosic ethanol production from pretreated arundo donax’, Bioresource, 12(3), pp. 5321–5342

Anish, R., and Rao, M. (2009) ‘Bioethanol from lignocellulosic biomass’ in Pandey, A. (eds.) Handbook of Plant-Based Biofuels. Boca Raton: CRC Press.

Azizah, N., Al-Baarri, A. N., and Mulyani, S. (2012) ‘Pengaruh lama fermentasi terhadap kadar alkohol, pH, dan produksi gas pada proses fermentasi bioetanol dari whey dengan substitusi kulit nanas (Effect of long fermentation on alcohol content, ph, and gas production in the fermentation process of bioethanol from whey with pineapple skin substitution)’, Jurnal Aplikasi Teknologi Pangan, 1(3), pp. 72–77 [In Indonesian]

Bailey, M. J., Biely, P., and Poutanen, K. (1992) ‘Interlaboratory testing of methods for assay of xylanase activity’, Journal of Biotechnology, 23(3), pp. 257 – 270

Brienzo, M., Carvalho, W., and Milagres, A. M. F. (2010) ‘Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus’, Applied Biochemistry and Biotechnology, 162, pp. 1195-1205

Canettieri, E. V., Silva, J. B. A., and Felipe, M. G. (2001) ‘Application of factorial design to the study of xylitol production from eucalyptus hemicellulosic hydrolysate’, Applied Biochemistry and Biotechnology, 94(2), pp. 159-168

Chen, M., Zhao, J., and Xia, L. (2008) ‘Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars’, Carbohydrate Polymers, 71(3), pp. 411-415

Cheng, K., Wu,, J. Lin, Z., and Zhang J. (2014) ‘Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob’, Biotechnology for Biofuels, 7, pp. 1-9

D’Amore, T., Panchal, C. J., Russel, I., and Stewart, G. G. (1990) ‘A study of ethanol tolerance in yeast’, Critical Reviews in Biotechnology, 9(4), pp. 287 – 304

Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., and Abimanyu, H. (2015) ‘Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch’, Energy Procedia, 68, pp. 107–116

Datta, A., Betterman, A., and Kirk, T. K. (1991) ‘Identification of spesific manganese peroxidase among lignolitic enzym secreted by Phanerochaete chrysosporium during wood decay’, Applied and Environmental Microbiology, 57(5), pp. 1453–1460

Directorate General of Estate (2020) Palm oil production by province (2016-2020) [Online]. Available at: [In Indonesian]

Dishington, J. M. (2016) The oil palm agribusiness has much to contribute to the colombian strategy to face the challenges of climate change. Available at:

Foster-Powell, K., Holt, S. H. A., and Brand-Miller, J. C. (2002) ‘International table of glycemic index and glycemic load values: 2022’, The American Journal of Clinical Nutrition, 76(1), pp. 5–56

Gigih, T. P., Novia., and Khairunnas. (2015) ‘Pengaruh konsentrasi natrium hidroksida saat pretreatment dan waktu fermentasi terhadap kadar bioetanol dari daun nanas (Effect of sodium hydroxide concentration during pretreatment and fermentation time on bioethanol levels from pineapple leaves)’, .Jurnal Teknik Kimia, 21(3), pp. 16–25 [In Indonesian]

Halbon, J., Gorwa, M. F., Meinander, N., Penttila, M., Keranen, S., Hahn-hagerdal, B. (1994) ‘The influence of cosubstrate and aeration on xylitol formation on recombinant Saccharomyces cerevisiae expressing the XYL I gene’, Applied Microbiology and Biotechnology, 42(3), pp. 326–333

Hanidah, I. I. (2010) ‘Hidrolisis bagas tebu (Saccharum officinarum L.) secara asam - enzim dan fermentasi hidrolisat oleh Pichia stiptis, Saccharomyces cerevisiae, dan Zymomonas mobilis (Hydrolysis of sugar cane bagasse (Saccharum officinarum L.) by acid - enzymes and hydrolyzate fermentation by Pichia stiptis, Saccharomyces cerevisiae, and Zymomonas mobilis)’, International Seminar Biotechnology [In Indonesian]

Harijono, A., Hertomo, B., and Kasijanto. (2018) ‘Penggunaan bioetanol sebagai alternatif campuran bahan bakar pada mesin otto (Bioethanol utilization as an alternative fuel in otto machine)’, Jurnal Rekayasa Energi dan Mekanika, 1(2), pp. 54-64 [In Indonesian]

He, L., Han, Q., Jameel, H., Chang, H., Philipps, R., and Wang, Z. (2017) ‘Comparison of one stage batch and fed batch enzymatics hydrolisis of pretreated hardwood for teh production of biosugar’, Applied Biochemistry and Biotechnology, 184, pp. 1441–1452

Hickert, L. R., Souza-Cruz, P. B., Rosa, C. A., Ayub, M. A. Z. (2013) ‘Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresource Technology, 143, pp. 112 – 116

Jin, M., Sarks, C., Gunawan, C., Bice, B. D., Simonett, S. P., Narasimhan, R. A., Willis, L. B., Dale, B. E., Balan, V., and Sato, T. K. (2013) ‘Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover’, Biotechnology and Biofuels, 6, pp. 1-14

Kassim, M. A., Kheang, L. S., Bakar, N. A., Aziz, A. A., and Som, R. M. (2011) ‘Bioethanol production from enzymatically saccharified empty fruit bunches hydrolysate using Saccharomyces cerevisiae’, Research Journal of Environmental Sciences. 5(6), pp. 573 – 586

Khienpanya, N., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana, W., Sultan, I. N., Tareen, A. K., and Parakulsuksatid, P. (2010) ‘Influence of particle size of pretreatment oil palm trunk fibers from simultaneous saccharification and fermentation on ethanol production’, Thai Society for Biotechnology and International Conference, pp. 21-28

Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., Prausnitz, J. M. (2013) ‘Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars’, Bioresource Technology, 135, pp. 23 – 29

Mardawati, E., Andoyo, R., Muhaemin, M., Nurjanah, S., Natawigena, D., Herwanto, T., Handarto., Utama, G. L., Rosalinda., Poppy and Kramadibrata, A. M. (2019) ‘Fermentation process of glycerol to arabitol from byproducts of Reutalis trisperma biodiesel using yeast of Debaryomyces hansenii’, IOP Conference Series: Earth and Environmental Science, 347(1), pp. 1-8

Mardawati, E., Kresnowati, M., Purwadi, R., Bindar, Y., and Setiadi, T. (2018) ‘Fungal production of xylanase from oil palm empty fruit bunches via solid state cultivation’, International Journal on Advanced Science Engineering and Information Technology, 8(6), pp. 2539–2546

Mardawati, E., Maharani, N., Wira, D.W., Harahap B. M., Yuliana, T., and Sukarminah, E. (2020) ‘Xylitol production from oil palm empty fruit bunches (OPEFB) via simultaneous enzymatic hydrolysis and fermentation process’, Journal of Industrial Information Technology in Agriculture, 2(1), pp. 29–36

Mardawati, E., Purwadi, R., Kresnowati, M., and Setiadi, T. (2017) ‘Evaluation of the enzymatic hydrolysis process of oil palm empty fruit bunch using crude fungal xylanase’, ARPN Journal of Engineering and Applied Sciences, 12(18), pp. 5286-5296

Mardawati, E., Trirakhmadi, A., and Kresnowati, M., and Setiadi, T. (2017) ‘Kinetic study on fermentation of xylose for the xylitol production’, Journal of Industrial Information Technology in Agriculture, 1(1), pp. 1–6

Mardawati, E., Werner, A., Bley, T., Kresnowati, M., and Setiadi, T. (2014) ‘The enzymatic hydrolysis of oil palm empty fruit bunches to xylose’, Journal of the Japan Institute of Energy, 93(10), pp. 973–978

Mardawati, E., Wira, D. W., Kresnowati, M., Purwadi, R., and Setiadi, T. (2015) ‘Microbial production of xylitol from oil palm empty fruit bunches hydrolysate : The effect of glucose concentration’, Journal of the Japan Institute of Energy, 94(8), pp. 769-774

Nascimento, D. C. O., Ferreira, A. S., Monteiro, S. N., Aquino, R. C. M. P., and Kestur, S. G. (2012) ‘Studies on the characterization of piassava fibers and their epoxy composites’, Composites Part A: Applied Science and Manufacturing, 43(3), pp. 353-362

Ngadi, N., and Lani, N. S. (2014) ‘Extraction and characterization of cellulose acetate from empty friut bunch (EFB) fiber’, Jurnal Teknologi, 68(5), pp. 35–36

Octavia, S (2008) Efektivitas Kombinasi Proses Perendaman dengan Amoniak dan Asam pada Pengolahan Awal Biomassa Sebagai Bahan Baku Pembuatan Bioetanol (The Effectiveness of Combination Between Acidic and Ammonia Soaking Process in the Pretreatment of Biomass as a Raw Material in Bioethanol Processes). Thesis. Intitut Teknologi Bandung. Bandung [In Indonesian]

Omar, F. N., Mohammed, M. A. P., and Baharuddin, A. S. (2014) ‘Microstructure modelling of silica bodies from oil palm empty fruit bunch (OPEFB) fibres’, Bioresources, 9(1), pp. 938-951

Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998) ‘Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis’, Bioresource Technology, 65(3), pp. 191-201

Qin, L., Liu, Z., Jin, M., Li, B., and Yuan, Y. (2013) ‘High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover’, Bioresource Technology, 146, pp. 504–511

Salvi, D. A., Aita, G. M., Robert, D., and Bazan, V. (2010) ‘Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation’, Applied Biochemistry and Biotechnology, 161(1), pp. 67 – 74

Sampaio, F. C., Mantovani, H. C., Passos, F. J. V., de Moaraes C. A., Converti, A., and Passos, F. M. L. (2005) ‘Bioconversion of D-xylose to xylitol by Debaryomyces hansenii UFV-170: Product formation versus growth’, Process Biochemistry, 40(11), pp. 3600-3606

Shinoj, S., Visvanathan, R., Psanigrahi, S., and Kochubabu, M. (2011) ‘Oil palm fiber (OPF) and its composites: A review’, Industrial Corps and Products, 33 (1), 7-22

Suhartini, S., Rohma, N. A., Mardawati, E., Kasbawati., Hidayat, N., and Melville, L. (2022) ‘Bioreferining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review’, Renewable and Sustainable Energy Reviews,154, pp. 1-25

Sujatno, A., Salam, R., Bandriyana and Dimyati, A. (2015) ‘Studi scanning electron microscopy (SEM) untuk karakterisasi proses oxidasi paduan zirkonium (Study of scanning electron microscopy (SEM) for characterization of oxidation processes of zirconium alloys)’, Jurnal Forum Nuklir, 9(1), pp. 44–50 [In Indonesian]

Suriyachai, N., Weerasaia, K., Laosiripojana, N., Champreda, V., and Unrean, P. (2013) ‘Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments’, Bioresource Technology, 142, pp. 171–178

Tran, L. H., Yogo, M., Ojima, H., Idota, O., Kawai, K., Suzuki, T., and Takamizawa, K. (2004) ‘The production of xylitol by enzymatic hydrolysis of agricultural wastes’, Biotechnology and Bioprocess Engineering, 9(3), pp. 223-228

Yanase, S., Hasunuma, T., Yamada, R., Tanaka, T., Ogino, C., Fukuda, H., and Kondo, A. (2010) ‘Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes’, Applied Microbiology and Biotechnology, 88(1), pp. 381–388

Zhang, H., and Wu, S. (2014) ‘Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars’, Cellulose, 21, pp. 1341 – 1349

Zhang, M., Su, R., Oi, W., and He, Z. (2010) ‘Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes’, Applied Biochemistry and Biotechnology, 160(5), 1407-1414

Zulkiple, N., Maskat, M. Y., and Hassan, O. (2016) ‘Pretreatment of oil palm empty fruit fiber (OPEFB) with aquaeous ammonia for high production of sugar’, Procedia Chemistry, 18, pp. 155–161



  • There are currently no refbacks.

Copyright (c) 2022 Efri Mardawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.