A mini-review on anaerobic digestion of Indonesian macroalgae biomass: present scenario and future scope

Elviliana Elviliana, Sri Suhartini, Nur Hidayat, Hans Oechsner

Abstract


Macroalgae as the marine renewable biomass has great potential for production of bioenergy and bioproduct with integrated biorefinery concept. However, high lignin content may hinder the valorization. Same conditions applied for the macroalgae in Indonesia which has the great opportunity to explore more in the bioenergy field. This study aimed to investigate potential application of macroalgae as substrates for bioenergy production, specifically with anaerobic digestion (AD) technology. Anaerobic digestion as the one of the ways to transform macroalgae into biogas. This review analyses the latest study’s results from the view of composition, degradation, and the biorefining pathways. The biomass is constructed from lignocellulose compounds and have thick cell wall that be the main drawbacks for the biochemical conversion technology. Various enhancement pathways have been studied i.e., pretreatment methods to enhance the accessibility for microorganisms, reduce the outer cell wall thickness, and co-digestion with addition of other substrates to balancing the nutrition and providing the stable condition for AD system. In term to have more feasibility from economic view, the strategy is put in the biorefinery concept to have more valuable-added products. The decrement of energy input, higher of energy output and yield of outcome along with some products being produced are expected to gain from the proposed ways. Those information will provide new research directions and solutions for converting Indonesia marine macroalgae using AD technology.


Keywords


Anaerobic digestion; Biogas production; Biorefinery; Macroalgae; Marine biomass

Full Text:

PDF

References


Abdel-Kareem, M. S. M., and ElSaied, A, A, F. (2022) ‘Global seaweeds diversity’, in El-Sheekh, M., and Abomohra, A. E. (eds.) Handbook of Algal Biofuels. Amsterdam: Elsevier, pp. 39–55

Abomohra, A. E. F., and Almutairi, A. W. (2020) ‘A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery’, Bioresource Technology, 317, pp. 124027

Adghim, M., Abdallah, M., Saad, S., Shanableh, A., and Sartaj, M. (2020) ‘Assessment of the biochemical methane potential of mono- and co-digested dairy farm wastes’, Waste Management & Research, 38(1), pp. 88–99

Ai, P., Zhang, X., Ran, Y., Meng, L., Elsayed, M., Fan, Q. and Abomohra, A.E.-F. (2019) ‘Biomass briquetting reduces the energy loss during long-term ensiling and enhances anaerobic digestion: A case study on rice straw’, Bioresource Technology, 292, pp 121912

Akila, V., Manikandan, A., Sahaya Sukeetha, D., Balakrishnan, S., Ayyasamy, P. M., and Rajakumar, S. (2019) ‘Biogas and biofertilizer production of marine macroalgae: An effective anaerobic digestion of Ulva sp.’, Biocatalysis and Agricultural Biotechnology, 18, pp. 101035

Akunna, J. C., and Hierholtzer, A. (2016) ‘Co-digestion of terrestrial plant biomass with marine macro-algae for biogas production’, Biomass and Bioenergy, 93, pp. 137–143

Ap, Y., Farghali, M., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., and Umetsu, K. (2021) ‘Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: Influences of mechanical, chemical, and biological pretreatments’, Biochemical Engineering Journal, 175, pp. 108140

Ayala-Mercado, I. D., Weber, B., and Durán-García, M. D. (2022) ‘Use of Hydrothermal Pretreatment to Enhance Biogas Production from Pelagic Sargassum’, BioEnergy Research, 15(3), pp. 1639–1648

Bakkaloglu, S., Cooper, J., and Hawkes, A. (2022) ‘Methane emissions along biomethane and biogas supply chains are underestimated’, One Earth, 5(6), pp. 724–736

Banu, J. R., Tamilarasan, K., Woong Chang, S., Duc Nguyen, D., Ponnusamy, V. K., and Kumar, G. (2020) ‘Surfactant assisted microwave disintegration of green marine macroalgae for enhanced anaerobic biodegradability and biomethane recovery’, Fuel, 281, pp. 118802

Bhatnagar, N., Ryan, D., Murphy, R., and Enright, A.M. (2022) ‘A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective’, Renewable and Sustainable Energy Reviews, 154, pp. 111884

Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., and Farcas, A. C. (2020) ‘Macroalgae—a sustainable source of chemical compounds with biological activities’, Nutrients, 12(10), pp 1-23

Brown, A. E., Finnerty, G. L., Camargo-Valero, M. A., and Ross, A. B. (2020) ‘Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion’, Bioresource Technology, 312, pp. 123539

Calabrò, P. S., Fazzino, F., Sidari, R., and Zema, D. A. (2020) ‘Optimization of orange peel waste ensiling for sustainable anaerobic digestion’, Renewable Energy, 154, pp. 849–862

Casoni, A. I., Ramos, F. D., Estrada, V., and Diaz, M. S. (2020) ‘Sustainable and economic analysis of marine macroalgae based chemicals production - Process design and optimization’, Journal of Cleaner Production, 276, pp. 122792

Cavalaglio, G., Cotana, F., Nicolini, A., Coccia, V., Petrozzi, A., Formica, A., and Bertini, A. (2020) ‘Characterization of various biomass feedstock suitable for small-scale energy plants as preliminary activity of biocheaper project’, Sustainability, 12(16), pp. 6678

Charis, G., Danha, G., and Muzenda, E. (2020) ‘Characterizations of biomasses for subsequent thermochemical conversion: A comparative study of pine sawdust and acacia tortilis’, Processes, 8(5), pp. 546

Chikani-Cabrera, K. D., Fernandes, P. M. B., Tapia-Tussell, R., Parra-Ortiz, D. L., Hernández-Zárate, G., Valdez-Ojeda, R., and Alzate-Gaviria, L. (2022) ‘Improvement in methane production from pelagic sargassum using combined pretreatments’, Life, 12(8), pp. 1214

Cinar, S. Ö., Wieczorek, N., Kosheleva, A., Küçüker, M. A., and Kuchta, K. (2022) ‘Biogas production from aquatic biomass’, in Pandey, V. C. (eds.) Algae and Aquatic Macrophytes in Cities. Amesterdam: Elsevier, pp. 203–231

Cogan, M., and Antizar-Ladislao, B. (2016) ‘The ability of macroalgae to stabilise and optimise the anaerobic digestion of household food waste’, Biomass and Bioenergy, 86, pp. 146–155

Costa, J. C., Oliveira, J. V., Pereira, M. A., Alves, M. M., and Abreu, A. A. (2015) ‘Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion’, Bioresource Technology, 190, pp. 251–256.

Cudjoe, D., Zhu, B., and Wang, H. (2022) ‘Towards the realization of sustainable development goals: Benefits of hydrogen from biogas using food waste in China’, Journal of Cleaner Production, 360, pp. 132161

D’Este, M., Alvarado-Morales, M., Ciofalo, A., and Angelidaki, I. (2017) ‘Macroalgae Laminaria digitata and Saccharina latissima as potential biomasses for biogas and total phenolics production: Focusing on seasonal and spatial variations of the algae’, Energy & Fuels, 31(7), pp. 7166–7175

Ding, L., Cheng, J., Lin, R., Deng, C., Zhou, J., and Murphy, J. D. (2020) ‘Improving biohydrogen and biomethane co-production via two-stage dark fermentation and anaerobic digestion of the pretreated seaweed Laminaria digitata’, Journal of Cleaner Production, 251, pp. 119666

Duarte Moreno, H., Reuter, H., Kase, A., and Teichberg, M. (2021) ‘Seaweed farming and land-use impacts on seagrass meadows in the region of Rote Island, Indonesia’, Estuarine, Coastal and Shelf Science, 263, pp. 107635

El Asri, O., Ramdani, M., Latrach, L., Haloui, B., Ramdani, M., and Afilal, M. E. (2017) ‘Comparison of energy recovery after anaerobic digestion of three Marchica lagoon algae ( Caulerpa prolifera , Colpomenia sinuosa , Gracilaria bursa-pastoris)’, Sustainable Materials and Technologies, 11, pp. 47–52

El Nemr, A., Hassaan, M. A., Elkatory, M. R., Ragab, S., and Pantaleo, A. (2021) ‘Efficiency of Fe3O4 nanoparticles with different pretreatments for enhancing biogas yield of macroalgae Ulva intestinalis Linnaeus’, Molecules, 26(16), pp. 5105

Elalami, D., Monlau, F., Carrere, H., Abdelouahdi, K., Charbonnel, C., Oukarroum, A., Zeroual, Y., and Barakat, A. (2020) ‘Evaluation of agronomic properties of digestate from macroalgal residues anaerobic digestion: Impact of pretreatment and co-digestion with waste activated sludge’, Waste Management, 108, pp. 127–136

Erias, A. F., and Iglesias, E. M. (2022) ‘Price and income elasticity of natural gas demand in Europe and the effects of lockdowns due to Covid-19’, Energy Strategy Reviews, 44, pp. 100945

Farghali, M., Ap, Y., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., and Umetsu, K. (2021) ‘Thermophilic anaerobic digestion of Sargassum fulvellum macroalgae: Biomass valorization and biogas optimization under different pre-treatment conditions’, Journal of Environmental Chemical Engineering, 9(6), pp. 106405

Farobie, O., Syaftika, N., Hartulistiyoso, E., Amrullah, A., Bayu, A., Moheimani, N. R., Matsumura, Y., and Karnjanakom, S. (2022) ‘The potential of sustainable biogas production from macroalgae in Indonesia’, IOP Conference Series: Earth and Environmental Science, 1038(1), pp. 012020

Feng, S., Kang, K., Salaudeen, S., Ahmadi, A., He, Q. S., and Hu, Y. (2022) ‘Recent advances in algae-derived biofuels and bioactive compounds’, Industrial & Engineering Chemistry Research, 61(3), pp. 1232–1249

Fortin, S. G., Song, B., Anderson, I. C., and Reece, K. S. (2022) ‘Blooms of the harmful algae Margalefidinium polykrikoides and Alexandrium monilatum alter the York River Estuary microbiome’, Harmful Algae, 114, pp. 102216

Fu, S. F., Chen, K. Q., Zhu, R., Sun, W. X., Zou, H., and Guo, R. B. (2018) ‘Improved anaerobic digestion performance of Miscanthus floridulus by different pretreatment methods and preliminary economic analysis’, Energy Conversion and Management, 159, pp. 121–128

Furtado Amaral, A., Previtali, D., Bassani, A., Italiano, C., Palella, A., Pino, L., Vita, A., Bozzano, G., Pirola, C., and Manenti, F. (2020) ‘Biogas beyond CHP: The HPC (heat, power & chemicals) process’, Energy, 203, pp. 117820

Garcia-Perez, P., Lourenço-Lopes, C., Silva, A., Pereira, A. G., Fraga-Corral, M., Zhao, C., Xiao, J., Simal-Gandara, J., and Prieto, M. A. (2022) ‘Pigment composition of nine brown algae from the Iberian Northwestern Coastline: Influence of the extraction solvent’, Marine Drugs, 20(2), pp. 113

Gruduls, A., Maurers, R., and Romagnoli, F. (2018) ‘Baltic Sea seaweed biomass pretreatment: Effect of combined CO2 and thermal treatment on biomethane potential’, Energy Procedia, 147, pp. 607–613

Gunes, B., Stokes, J., Davis, P., Connolly, C., and Lawler, J. (2019) ‘Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review’, Renewable and Sustainable Energy Reviews, 113, pp. 109281

Hassaan, M. A., El Nemr, A., Elkatory, M. R., Eleryan, A., Ragab, S., El Sikaily, A., and Pantaleo, A. (2021) ‘Enhancement of biogas production from macroalgae Ulva latuca via ozonation pretreatment’, Energies, 14(6), pp. 1703

Heffernan, J. K., Lai, C. Y., Gonzalez-Garcia, R. A., Keld Nielsen, L., Guo, J., and Marcellin, E. (2023) ‘Biogas upgrading using Clostridium autoethanogenum for value-added products’, Chemical Engineering Journal, 452, pp. 138950

Hessami, M. J., Phang, S. M., Sohrabipoor, J., Zafar, F. F., and Aslanzadeh, S. (2019) ‘The bio-methane potential of whole plant and solid residues of two species of red seaweeds: Gracilaria manilaensis and Gracilariopsis persica’, Algal Research, 42, pp. 101581

Inseemeesak, B., and Areeprasert, C. (2020) ‘Fiber extraction and energy recovery from Cocos nucifera Linn mesocarp residues employing steam explosion and anaerobic digestion’, Industrial Crops and Products, 147, pp. 112180

Iswadi, A., Porter, J. S., Bell, M. C., Garniati, L., Harris, R. E., and Priyotomo, G. (2022) ‘Establishing an agenda for biofouling research for the development of the marine renewable energy industry in Indonesia’, Journal of Marine Science and Engineering, 10(3), pp. 384

Kanugrahan, S. P., Hakam, D. F., and Nugraha, H. (2022) ‘Techno-economic analysis of Indonesia Power generation expansion to achieve economic sustainability and net zero carbon 2050’, Sustainability, 14(15), pp. 9038

Karray, R., Hamza, M., and Sayadi, S. (2015) ‘Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production’, Bioresource Technology, 187, pp. 205–213

Karray, R., Karray, F., Loukil, S., Mhiri, N., and Sayadi, S. (2017) ‘Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement’, Waste Management, 61, pp. 171–178

Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K. and Tabatabaei, M. (2019) ‘Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)’, Renewable and Sustainable Energy Reviews, 112, pp. 626–642

KKP (2019) Peluang Usaha dan Investasi Rumput Laut (Seaweed Business and Investment Opportunities). Kementerian Kelautan dan Perikanan. [In Indonesian]

KKP (2022) ‘Rilis Data KP Triwulan I Tahun 2022 (KP Data Release for Quarter I of 2022). Indonesia: Kementerian Kelautan dan Perikanan. [In Indonesian]

Kraan, S. (2020) ‘Seaweed resources, collection, and cultivation with respect to sustainability’, in Torres, M, D., Kraan, S., Dominguez, H. (eds.) Sustainable Seaweed Technologies. Amsterdam: Elsevier, pp. 89–102

Krastina, J., Romagnoli, F., and Balina, K. (2017) ‘SWOT analysis for a further LCCA-based techno-economic feasibility of a biogas system using seaweeds feedstock’, Energy Procedia, 128, pp. 491–496

Kuroda, K., Akiyama, Y., Keno, Y., Nakatani, N. and Otsuka, K. (2014) ‘Anaerobic digestion of marine biomass for practical operation’, Journal of Marine Science and Technology, 19(3), pp. 280–291

Li, P., Ng, J., and Lu, Y. (2022) ‘Accelerating the adoption of renewable energy certificate: Insights from a survey of corporate renewable procurement in Singapore’, Renewable Energy, 199, pp. 1272–1282

Li, W. (2022) ‘Anaerobic digestion via codigestion strategies for production of bioenergy’, in Pandey, A., Tong, Y. W., Zhang, L., and Zhang, J. (eds.) Biomass, Biofuels, Biochemicals. Amsterdam: Elsevier, pp. 233–252

Luo, L., Ng, N. C. H., Zhao, J., Li, D., Shi, Z., and Zhou, M. (2022) ‘Conversion of food waste to bioenergy and biochemicals via anaerobic digestion’, in Pandey, A., Tong, Y. W., Zhang, L., and Zhang, J. (eds.) Biomass, Biofuels, Biochemicals. Amsterdam: Elsevier, pp. 25–44

Luo, L., Qu, Y., Gong, W., Qin, L., Li, W., and Sun, Y. (2021) ‘Effect of particle size on the aerobic and anaerobic digestion characteristics of whole rice straw’, Energies, 14(13), pp. 3960

Lymperatou, A., Engelsen, T. K., Skiadas, I. V., and Gavala, H. N. (2022) ‘Different pretreatments of beach-cast seaweed for biogas production’, Journal of Cleaner Production, 362, pp. 132277

Madejón, E., Panettieri, M., Madejón, P., and Pérez-de-Mora, A. (2022) ‘Composting as sustainable managing option for seaweed blooms on recreational beaches’, Waste and Biomass Valorization, 13(2), pp. 863–875

Maneein, S., Milledge, J. J., Harvey, P. J., and Nielsen, B. V. (2021) ‘Methane production from Sargassum muticum: effects of seasonality and of freshwater washes’, Energy and Built Environment, 2(3), pp. 235–242

Maneein, S., Milledge, J. J., Nielsen, B. V., and Harvey, P. J. (2018) ‘A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation’, Fermentation, 4(4), pp. 100

Marquez, G. P. B., Santiañez, W. J. E., Trono, G. C., Montaño, M. N. E., Araki, H., Takeuchi, H., and Hasegawa, T. (2014) ‘Seaweed biomass of the Philippines: Sustainable feedstock for biogas production’, Renewable and Sustainable Energy Reviews, 38, pp. 1056–1068

Marquez, G.P.B., Takeuchi, H., Montaño, M.N.E. and Hasegawa, T. (2020) ‘Performance of rice straw as mono- and co-feedstock of Ulva spp. for thalassic biogas production’, Heliyon, 6(9), pp. 1-10

Melis, E., Asquer, C., Carboni, G., and Scano, E. A. (2023) ‘Role of Cannabis sativa L. in energy production: Residues as a potential lignocellulosic biomass in anaerobic digestion plants’, in García-Tejero, I. F., and Durán-Zuazo, V. H. (eds.) Current Applications, Approaches, and Potential Perspectives for Hemp. Amsterdam: Elsevier, pp. 111–199

Membere, E., and Sallis, P. (2018) ‘Effect of temperature on kinetics of biogas production from macroalgae’, Bioresource Technology, 263, pp. 410–417

Miao, H., Wang, S., Zhao, M., Huang, Z., Ren, H., Yan, Q., and Ruan, W. (2014) ‘Codigestion of Taihu blue algae with swine manure for biogas production’, Energy Conversion and Management, 77, pp. 643–649

Milledge, J., Nielsen, B., Sadek, M., and Harvey, P. (2018) ‘Effect of Freshwater Washing Pretreatment on Sargassum muticum as a feedstock for biogas production’, Energies, 11(7), pp. 1771

Milledge, J. J., Nielsen, B. V., and Harvey, P. J. (2019) ‘The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum’, Journal of Applied Phycology, 31(1), pp. 779–786

Minhas, A., Kaur, B., and Kaur, J. (2020) ‘Genomics of algae: Its challenges and applications’, in Barh, D., Soares, S., Tiwari, S., and Azevedo, V. (eds.) Pan-genomics: Applications, Challenges, and Future Prospects. Amsterdam: Elsevier, pp. 261–283

Montingelli, Maria E., Benyounis, K.Y., Quilty, B., Stokes, J., and Olabi, A. G. (2016) ‘Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland’, Applied Energy, 177, pp. 671–682

Montingelli, M. E., Benyounis, K. Y., Stokes, J., and Olabi, A. G. (2016) ‘Pretreatment of macroalgal biomass for biogas production’, Energy Conversion and Management, 108, pp. 202–209

Nagarajan, D., Chen, C.-Y., Ariyadasa, T.U., Lee, D.-J. and Chang, J.-S. (2022) ‘Macroalgal biomass as a potential resource for lactic acid fermentation’, Chemosphere, 309, pp. 136694

Nagula, K., Sati, H., Trivedi, N. and Reddy, C.R.K. (2022) ‘Biofuels and bioproducts from seaweeds’, in Tuli, D., Kuila, A., and Kasture, S. (eds.) Advanced Biofuel Technologies. Amsterdam: Elsevier, pp. 431–455

Nazurally, N. (2018) ‘Anaerobic digestion of fish waste and seagrass/macroalgae: Potential sustainable waste management for tropical Small Island Developing States’, Journal of Material Cycles and Waste Management, 20(3), pp. 1724–1735

Negro, V., Alvarado-Morales, M., Tsapekos, P., Fino, D., Ruggeri, B., and Angelidaki, I. (2022) ‘Co-digestion of orange peels and marine seaweed with cattle manure to suppress inhibition from toxicants’, Biomass Conversion and Biorefinery, 12(8), pp. 3209–3218

Nkuna, R., Roopnarain, A., Rashama, C., and Adeleke, R. (2021) ‘Insights into organic loading rates of anaerobic digestion for biogas production: A review’, Critical Reviews in Biotechnology, pp. 1–21

Obaideen, K., Abdelkareem, M. A., Wilberforce, T., Elsaid, K., Sayed, E. T., Maghrabie, H. M., and Olabi, A. G. (2022) ‘Biogas role in achievement of the sustainable development goals: Evaluation, challenges, and guidelines’, Journal of the Taiwan Institute of Chemical Engineers, 131, pp. 104207

Obata, O., Akunna, J. C., and Walker, G. (2015) ‘Hydrolytic effects of acid and enzymatic pre-treatment on the anaerobic biodegradability of Ascophyllum nodosum and Laminaria digitata species of brown seaweed’, Biomass and Bioenergy, 80, pp. 140–146

Obata, O., Ditchfield, A., Hatton, A., and Akunna, J. (2020) ‘Investigating the impact of inoculum source on anaerobic digestion of various species of marine macroalgae’, Algal Research, 46, pp. 101803

Obluchinskaya, E. and Daurtseva, A. (2020) ‘Effects of air drying and freezing and long-term storage on phytochemical composition of brown seaweeds’, Journal of Applied Phycology, 32(6), pp. 4235–4249

O’Connor, S., Ehimen, E., Pillai, S. C., Black, A., Tormey, D., and Bartlett, J. (2021) ‘Biogas production from small-scale anaerobic digestion plants on European farms’, Renewable and Sustainable Energy Reviews, 139, pp. 110580

Pangestuti, M. B., Suhartini, S., and Hidayat, N. (2021) ‘Life cycle assessment of bioenergy production from macroalgae : A review’, IOP Conference Series: Earth and Environmental Science, 924(1), pp. 1-13

Pardilhó, S., Boaventura, R., Almeida, M., and Dias, J.M. (2022) ‘Marine macroalgae waste: A potential feedstock for biogas production’, Journal of Environmental Management, 304, pp. 114309

Pereira, A. P., Woodman, T. J., and Chuck, C. J. (2021) ‘An integrated biorefinery to produce 5-(hydroxymethyl)furfural and alternative fuel precursors from macroalgae and spent coffee grounds’, Sustainable Energy & Fuels, 5(23), pp. 6189–6196

Puspita, M., Setyawidati, N. A. R., Stiger-Pouvreau, V., Vandanjon, L., Widowati, I., Radjasa, O. K., Bedoux, G., and Bourgougnon, N. (2020) ‘Indonesian Sargassum species bioprospecting: potential applications of bioactive compounds and challenge for sustainable development’, in Bourgougnon, N. (eds.) Advances in Botanical Research. Amsterdam: Elsevier, pp. 113–161

Qu, Y., Cao, Z., Wang, W., Wang, N., Li, X., and Pan, J. (2019) ‘Monthly variations of fucoidan content and its composition in the farmed brown alga Saccharina sculpera (Laminariales, Phaeophyceae)’, Journal of Applied Phycology, 31(4), pp. 2623–2628

Ravanal, M. C., Camus, C., Buschmann, A. H., Gimpel, J., Olivera-Nappa, Á., Salazar, O., and Lienqueo, M. E. (2019) ‘Production of Bioethanol From Brown Algae’, in Hosseini, M. (eds.) Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts. Amsterdam: Elsevier, pp. 69–88

Remya, R. R., Samrot, A. V., Kumar, S. S., Mohanavel, V., Karthick, A., Chinnaiyan, V. K., Umapathy, D., and Muhibbullah, M. (2022) ‘Bioactive potential of brown algae’, Adsorption Science & Technology, 2022, pp. 1–13

Rimmer, M. A., Larson, S., Lapong, I., Purnomo, A. H., Pong-Masak, P. R., Swanepoel, L., and Paul, N. A. (2021) ‘Seaweed aquaculture in Indonesia contributes to social and economic aspects of livelihoods and community wellbeing’, Sustainability, 13(19), pp. 10946

Rodrigues, A. C. C. (2022) ‘Decreasing natural gas flaring in Brazilian oil and gas industry’, Resources Policy, 77, pp. 102776

Rodrigues, E. L., Fonseca, B. C., Gelli, V. C., Carli, S., Meleiro, L. P., Furriel, R. P. M., and Reginatto, V. (2019) ‘Enzymatically and/or thermally treated Macroalgae biomass as feedstock for fermentative H2 production’, Matéria (Rio de Janeiro), 24(2), pp. e12363

Rodriguez, C., Alaswad, A., El-Hassan, Z., and Olabi, A. G. (2018) ‘Improvement of methane production from P. canaliculata through mechanical pretreatment’, Renewable Energy, 119, pp. 73–78

Rodriguez, Cristina, Alaswad, A., El-Hassan, Z., and Olabi, A. G. (2018) ‘Waste paper and macroalgae co-digestion effect on methane production’, Energy, 154, pp. 119–125

Romagnoli, F., Dorella, M., Gruduls, A., Collotta, M., and Tomasoni, G. (2019) ‘Anaerobic co-digestion of Baltic seaweeds with wheat straw and straw pellets: Synergetic effects on biomethane yield and kinetic biodegradability constant’, Energy Procedia, 158, pp. 854–860

Roopnarain, A., Rama, H., Ndaba, B., Bello-Akinosho, M., Bamuza-Pemu, E., and Adeleke, R. (2021) ‘Unravelling the anaerobic digestion 'black box': Biotechnological approaches for process optimization’, Renewable and Sustainable Energy Reviews, 152, pp. 111717

Setyaningsih, D., Hidayat, A., Aryanti, E. Y. V., and Muna, N. (2019) ‘Alkaline pre-treatment of Gelidium Latifolium and Caulerpa Racemosa for bioethanol production’, IOP Conference Series: Earth and Environmental Science, 309(1), pp. 1-12

Setyawidati, N., Kaimuddin, A. H., Wati, I. P., Helmi, M., Widowati, I., Rossi, N., Liabot, P. O., and Stiger-Pouvreau, V. (2018) ‘Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libukang Island, Malasoro Bay, Indonesia’, Journal of Applied Phycology, 30(1), pp. 159–171

Shackira, A. M., Jazeel, K., and Puthur, J. T. (2021) ‘Phycoremediation and phytoremediation: promising tools of green remediation’, in Mishra, V. K., and Kumar, A. (eds.) Sustainable Environmental Clean-up. Elsevier, pp. 273–293. Available at: https://doi.org/10.1016/B978-0-12-823828-8.00013-X.

Shin, S. R., Lee, M. K., Im, S., and Kim, D. H. (2018) ‘Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge’, Environmental Engineering Research, 24(3), pp. 449–455

Smullen, E., Finnan, J., Dowling, D., and Mulcahy, P. (2019) ‘The environmental performance of pretreatment technologies for the bioconversion of lignocellulosic biomass to ethanol’, Renewable Energy, 142, pp. 527–534

Suhartini, S., Hidayat, N., Permatasari, V. R., and Herera, A. C. E. (2020a) ‘Anaerobic co-digestion of Batik wastewater with macroalgae’, IOP Conference Series: Earth and Environmental Science, 475(1), pp. 1-8

Suhartini, S., Nurika, I., Rahmah, N. L., Paul, R., and Melville, L. (2020b) ‘Potential of Gracilaria sp. as single-or co-digestion feedstock for biogas production’, IOP Conference Series: Earth and Environmental Science, 460(1), pp. 1-7

Suhartini, S., Naraswati, A. S., and Nurika, I. (2021) ‘Effect of mixture ratio on co-digestion of vegetable and fruit waste with macro-algae, chicken manure and tofu dregs’, IOP Conference Series: Earth and Environmental Science, 733(1), pp. 1-9

Suhartini, S., Indah, S. H., Rahman, F. A., Rohma, N. A., Rahmah, N. L., Nurika, I., Hidayat, N., and Melville, L. (2022) ‘Enhancing anaerobic digestion of wild seaweed Gracilaria verrucosa by co-digestion with tofu dregs and washing pre-treatment’, Biomass Conversion and Biorefinery [Preprint]. Available at: https://doi.org/10.1007/s13399-022-02507-z.

Tabassum, M. R., Wall, D. M., and Murphy, J. D. (2016) ‘Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry’, Bioresource Technology, 219, pp. 228–238

Tamilarasan, K., Kavitha, S., Selvam, A., Rajesh Banu, J., Yeom, I. T., Nguyen, D. D., and Saratale, G. D. (2018) ‘Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina’, Energy, 163, pp. 533–545

Tapia-Tussell, R., Avila-Arias, J., Domínguez Maldonado, J., Valero, D., Olguin-Maciel, E., Pérez-Brito, D., and Alzate-Gaviria, L. (2018) ‘Biological pretreatment of mexican caribbean macroalgae consortiums using Bm-2 strain (Trametes hirsuta) and its enzymatic broth to improve biomethane potential’, Energies, 11(3), pp. 1-11

Tedesco, S., and Daniels, S. (2018) ‘Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept’, Applied Energy, 228, pp. 712–723

Tedesco, S., and Stokes, J. (2017) ‘Valorisation to biogas of macroalgal waste streams: A circular approach to bioproducts and bioenergy in Ireland’, Chemical Papers, 71(4), pp. 721–728

Thakur, N., Salama, E. S., Sharma, M., Sharma, P., Sharma, D., and Li, X. (2022) ‘Efficient utilization and management of seaweed biomass for biogas production’, Materials Today Sustainability, 18, pp. 100120

Thompson, T. M., Young, B.R. and Baroutian, S. (2019) ‘Advances in the pretreatment of brown macroalgae for biogas production’, Fuel Processing Technology, 195, pp. 106151

Thompson, T. M., Young, B. R., and Baroutian, S. (2021) ‘Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste’, Chemosphere, 275, p. 130035

Tsapekos, P., Kovalovszki, A., Alvarado-Morales, M., Rudatis, A., Kougias, P. G., and Angelidaki, I. (2021) ‘Anaerobic co-digestion of macroalgal biomass with cattle manure under high salinity conditions’, Journal of Environmental Chemical Engineering, 9(4), pp. 105406

Uribe, J. M., Mosquera-López, S., and Arenas, O.J. (2022) ‘Assessing the relationship between electricity and natural gas prices in European markets in times of distress’, Energy Policy, 166, pp. 113018

Wang, K., Khoo, K. S., Chew, K. W., Selvarajoo, A., Chen, W. H., Chang, J. S., and Show, P. L. (2021) ‘Microalgae: The future supply house of biohydrogen and biogas’, Frontiers in Energy Research, 9, pp. 660399

Wang, Y., Wei, W., Huang, Q. S., and Ni, B. J. (2021) ‘Methane production from algae in anaerobic digestion: Role of corncob ash supplementation’, Journal of Cleaner Production, 327, pp. 129485

Wickham, R., Xie, S., Galway, B., Bustamante, H., and Nghiem, L. D. (2019) ‘Pilot-scale operation experience of anaerobic Co-digestion for possible full scale implementation’, International Biodeterioration & Biodegradation, 142, pp. 137–142

Winquist, E., Van Galen, M., Zielonka, S., Rikkonen, P., Oudendag, D., Zhou, L., and Greijdanus, A. (2021) ‘Expert views on the future development of biogas business branch in Germany, The Netherlands, and Finland until 2030’, Sustainability, 13(3), pp. 1148

Wirawan, I. G. P., Dewi, N. K. E. S., Sasadara, M. M. V., Sunyamurthi, I. G. N. A., Jawi, I. M., Wijaya, I. N., Darmawati, I. A. P., Suada, I. K., and Krisnandika, A. A. K. (2022) ‘Phytochemical analysis and molecular identification of green macroalgae Caulerpa spp. from Bali, Indonesia’, Molecules, 27(15), pp. 4879

Wood, D. A. (2021) ‘Microalgae to biodiesel - Review of recent progress’, Bioresource Technology Reports, 14, pp. 100665

Wu, Y., Xu, X., Jiang, X., Lin, J., Lin, X., Zhao, S., and Yang, J. (2022) ‘Valorisation of harmful algae bloom (Enteromorpha prolifera) for polysaccharide and crude bio-oil production’, Fuel, 324, pp. 124482

Wu, Yi. N., Mattsson, M., Ding, Min. W., Wu, Meng. T., Mei, J., and Shen, Yao.L. (2019) ‘Effects of different pretreatments on improving biogas production of macroalgae Fucus vesiculosus and Fucus serratus in Baltic Sea’, Energy & Fuels, 33(3), pp. 2278–2284

Xu, F., Li, Y, Wicks, M., Li, Y., and Keener, H. (2019) ‘Anaerobic digestion of food waste for bioenergy production’, in Ferranti, P., Anderson, J. R., and Berry, E. M. (eds.) Encyclopedia of Food Security and Sustainability. Amsterdam: Elsevier, pp. 530–537

Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., Masakapalli, S. K., and Vivekanand, V. (2022) ‘Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions’, Metabolic Engineering, 69, pp. 323–337

Yahmed, N. B., Jmel, M. A., Alaya, M. B., Bouallagui, H., Marzouki, M. N., and Smaali, I. (2016) ‘A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas’, Energy Conversion and Management, 119, pp. 257–265

Yu, Q., Liu, R., Li, K., and Ma, R. (2019) ‘A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China’, Renewable and Sustainable Energy Reviews, 107, pp. 51–58

Yu, Y., Wu, J., Ren, X., Lau, A., Rezaei, H., Takada, M., Bi, X., and Sokhansanj, S. (2022) ‘Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review’, Renewable and Sustainable Energy Reviews, 154, pp. 111871

Yuhendra, A., Farghali, M., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., and Umetsu, K. (2021) ‘Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: Influences of mechanical, chemical, and biological pretreatments’, Biochemical Engineering Journal, 175, pp. 108140

Zaidi, A. A., Khan, S. Z., and Shi, Y. (2021) ‘Optimization of nickel nanoparticles concentration for biogas enhancement from green algae anaerobic digestion’, Materials Today: Proceedings, 39, pp. 1025–1028

Zhang, Y., Kang, X., Zhen, F., Wang, Z., Kong, X., and Sun, Y. (2022) ‘Assessment of enzyme addition strategies on the enhancement of lipid yield from microalgae’, Biochemical Engineering Journal, 177, pp. 108198

Zhao, M., Xu, J., Xue, H., Li, C., Liu, H., Gu, S., Miao, H. and Ruan, W. (2021) ‘Improving hydrogen recovery from anaerobic co-digestion of algae and food waste by high-pressure homogenisation pre-treatment’, Environmental Chemistry Letters, 19(4), pp. 3497–3504

Zhao, S., Yan, K., Wang, Z., Gao, Y., Li, K. and Peng, J. (2023) ‘Does anaerobic digestion improve environmental and economic benefits of sludge incineration in China? Insight from life-cycle perspective’, Resources, Conservation and Recycling, 188, pp. 106688




DOI: https://doi.org/10.21776/ub.afssaae.2022.005.02.5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Elviliana Elviliana, Sri Suhartini, Nur Hidayat, Hans Oechsner

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.