Glucohealth: The potential of porang (Amorphophallus muelleri) acid hydrolysed glucomannan as an inhibitor of SARS-CoV-2 interaction with ACE2

Amira Hasnanuha Ulayya, Ahmad Zaki Mubarok, Widodo Widodo, Simon Bambang Widjanarko, Marlita Eklesia

Abstract


The novel SARS-CoV-2 that causing global pandemic COVID-19 known to enter the host cell using the hACE2 as cell receptor. SARS-CoV S1 protein cleaves the ACE2 receptor, then the S2 subunits facilitates the cell membrane fusion, the inhibition of S1-ACE2 interaction can help develop anti SARS-CoV-2 medication. Porang glucomannan is a polysaccharide known as immunomodulator but never reported as anti-virus by direct inhibition of viral entry. Glucohealth was developed to investigate its potential. Method: Glucohealth is a glucomannan hydrolysate (HGM) that made from porang (Amorphophallus muelleri). Hydrolysis was carried using HCl in different concentration (0.25N, 0.5N, 1N) then analyzed its inhibitor activity using ELISA kit. Result: Higher HCl concentration produced HGM with smaller average particle size and lower glucomannan content. However, ELISA studies showed that glucomannan, including its hydrolysates, have the potency to bind with S1 protein and inhibit the binding activity of S1-ACE2. Degraded glucomannan proven to have better bioactivity and able to interact with pathogen to inhibit its cell entry. This project should be a gateway for further biomedical study of glucomannan from Indonesia’s local tuber and new approach to produce more natural therapy against COVID-19.


Keywords


Glucomannan Hydrolysate; hACE2; Inhibitor; Porang; SARS-Cov-2 S1

Full Text:

PDF

References


Abdulamir, A. S., and Hafidh, R. R. (2020) ‘The possible immunological pathways for the variable immunopathogenesis of COVID—19 infections among healthy adults, elderly and children’, Electronic Journal of General Medicine, 17(4), pp. 1–4

Al-Ghazzewi, F. H., and Tester, R. F. (2010) ‘Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro’, International Journal of Cosmetic Science, 32(2), pp. 139–142

Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., and Alonso, M. J. (2009) ‘Glucomannan, a promising polysaccharide for biopharmaceutical purposes’, European Journal of Pharmaceutics and Biopharmaceutics, 72(2), pp. 453–462

Arias-Reyes, C., Zubieta-DeUrioste, N., Poma-Machicao, L., Aliaga-Raduan, F., Carvajal-Rodriguez, F., Dutschmann, M., Schneider-Gasser, E, M., Zubieta-Calleja, G., and Soliz, J. (2020) ‘Does the pathogenesis of SAR-CoV-2 virus decrease at high-altitude?’, Respiratory Physiology & Neurobiology, 277, pp. 1–4

Bo, S., Muschin, T., Kanamoto, T., Nakashima, H., and Yoshida, T. (2013) ‘Sulfation and biological activities of konjac glucomannan’, Carbohydrate Polymers, 94(2), pp. 899–903

Chen, X., Han, W., Wang, G., and Zhao, X. (2020) ‘Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines’, International Journal of Biological Macromolecules, 164, pp. 331–343

Chorba, T. (2020) ‘The concept of the crown and its potential role in the downfall of coronavirus’, Emerging Infectious Diseases, 26(9), pp. 2302–2305

Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J., and Baldwin, T. C. (2012) ‘Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch’, Carbohydrate Polymers, 87(3), pp. 2202–2210

Connolly, M. L., Lovegrove, J. A., and Tuohy, K. M. (2010) ‘Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota’, Journal of Functional Foods, 2(3), pp. 219–224

da Costa, V, G., Moreli, M, L., and Saivish, M, V. (2020) ‘The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century’, Archives of Virology, 165(7), pp. 1517–1526

Devaraj, R. D., Reddy, C. K., and Xu, B. (2019) ‘Health-promoting effects of konjac glucomannan and its practical applications: A critical review’, International Journal of Biological Macromolecules, 126, pp. 273–281

Hassanzadeh, K., Pena, H. P., Dragotto, J., Buccarello, L., Iorio, F., Pieraccini, S., Sancini, G., and Feligioni, M. (2020) ‘Considerations around the SARS-CoV-2 spike protein with particular attention to Covid-19 brain infection and neurological symptoms’, ACS Chemical Neuroscience, 11(15), pp. 2361–2369

Igathinathane, C., Pordesimo, L. O., and Batchelor, W. D. (2009) ‘Major orthogonal dimensions measurement of food grains by machine vision using ImageJ’, Food Research International, 42(1), pp. 76–84

Jia, H. P., Look, D. C., Shi, L., Hickey, M., Pewe, L., Netland, J., Farzan, M., Wohlford-Lenane, C., Perlman, S., and McCray Jr, P. B. (2005) ‘ACE2 Receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia’, Journal of Virology, 79(23), pp. 14614–14621

Jian, W., Siu, K, C., and Wu, J. Y. (2015) ‘Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan’, Carbohydrate Polymers, 134, pp. 285–292

Jiang, M., Li, H., Shi, J., and Xu, Z. (2018) ‘Depolymerized konjac glucomannan: preparation and application in health care’, Journal of Zhejiang University: Science B, 19(7), pp. 505–514

Kumoro, A., Yuganta, T, Retnowati, D., and Ratnawati. (2018) ‘Acid hydrolysis and ethanol precipitation for glucomannan extraction from crude porang (Amorphophallus oncophyllus) tuber flour’, Chemistry and Chemical Technology, 12(1), pp. 101–108

Li, S., Xiong, Q., Lai, X., Li, X.,Wan, M., Zhang, J., Yan, Y., Cao, Man., Lu, L., Guan, J., Zhang, D., and Lin, Y. (2016) ‘Molecular modification of polysaccharides and resulting bioactivities’, Comprehensive Reviews in Food Science and Food Safety, 15(2), pp. 237–250

Machhi, J., Herskovitz, J., Senan, A. M., Dutta, D., Nath, B., Oleynikov, M. D., and Blomberg W. R. (2020) ‘The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections’, Journal of Neuroimmune Pharmacology, 15(3), pp. 359–386

Manab, A., Purnomo, H., Widjanarko, S. H., and Radiati, L. E. (2016) ‘Modification of porang (Amorphophallus oncophyllus) flour by acid and thermal process using conventional heating in waterbath and microwave irradiation’, Advance Journal of Food Science and Technology, 12(6), pp. 290–301

Ojima, R, Makabe, T., Prawitwong, P., and Takahashi, R. (2009) ‘Rheological property of hydrolyzed konjac glucomannan’, Transactions of the Materials Research Society of Japan, 34(3), pp. 477–480

Onishi, N., Kawamoto, S., Nishimura, M., Nakano, T., Aki, T., Shigeta, S., Shimizu, H., Hashimoto, K., and Ono, K. (2005) ‘A new immunomodulatory function of low-viscous konjac glucomannan with a small particle size: Its oral intake suppresses spontaneously occurring dermatitis in NC/Nga mice’, International Archives of Allergy and Immunology, 136(3), pp. 258–265

Pagliaro, P., and Penna, C. (2020) ‘ACE/ACE2 ratio: A key also in 2019 coronavirus disease (Covid-19)?’, Frontiers in Medicine, 7, pp. 17–21

Pederson, P. J. (2017) ‘Cinnamon Hydrolysis Enzymatic and Acid Treatments for Viscosity Reduction’. Thesis. University of Minnesota

Saito, S., Hasegawa, J., Kobayashi, N., Tomitsuka, T., Uchiyama, S., and Fukui, K. (2013) ‘Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: Influence of colloidal and conformational stabilities’, Pharmaceutical Research, 30(5), pp. 1263–1280

Song, Q, Ting, L., Wei, X., Nan, L., Linting, C., Shuhan, D., and Zhenyuan, Z. (2018) ‘Preparation, structure analysis and ACE inhibitory activity of konjac oligosaccharide’, Industrial Crops and Products, 124, pp. 812–821

Srzednicki, G., and Borompichaichartkul, C. (2020) Konjac glucomannan, production, processing, and functional applications. Florida: CRC Press

Suzuki, H., Oomizu, S., Yanase, Y., Onishi, N., Uchida, K., Mihara, S., Ono, K., Kameyoshi, Y., and Hide, M. (2010) ‘Hydrolyzed konjac glucomannan suppresses IgE production in mice B cells’, International Archives of Allergy and Immunology, 152(2), pp. 122–130

Takigami, S., Prawitwong, P., and Phillips, G. O. (2009) ‘Effects of molar mass on water binding properties of γ-irradiated konjac glucomannan’, Transactions of the Materials Research Society of Japan, 34(3), pp. 473–476

Tanaka, Y., Okamoto, K., Matsushima, A., Ota, T., Matsumoto, Y., and Akasaki, T. (2013) ‘Microwave-assisted acid hydrolysis of konjac products for determining the konjac powder content’, Analytical Sciences, 29(11), pp. 1049–1053

Tasić, M. B., Konstantinović, B. V., Lazić, M. L., and Veljković, V, B. (2009) ‘The acid hydrolysis of potato tuber mash in bioethanol production’, Biochemical Engineering Journal, 43(2), pp. 208–211

Tikellis, C., and Thomas, M. C. (2012) ‘Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease’, International Journal of Peptides, 2012

Wang, L. X., Lee, A. R., Yuan, Y., Wang, X. M., and Lu, T. J. (2020) ‘Preparation and FTIR, raman and SEM characterizations of konjac glucomannan-KCl electrogels’, Food Chemistry, 331, pp. 1-8

Wardhani, D. H., Wardana, I. N., Tajuddin, C. A., and Abdillah, M. A. (2020) ‘Antioxidant and physicochemical properties of acid degraded glucomannan’, AIP Conference Proceedings, 2197

Wardhani, D. H., Nugroho, F., and Muslihuddin, M. (2015) ‘Extraction of glucomannan of porang tuber (Amorphophallus onchophillus) by using IPA’, AIP Conference Proceedings, 1699

Wootton, A. N., Luker-Brown, M., Westcott, R. J., and Cheetham, P. S. J. (1993) ‘The extraction of a glucomannan polysaccharide from konjac corms (elephant yam, Amorphophallus rivierii)’, Journal of the Science of Food and Agriculture, 61(4), pp. 429–433

World Health Organization (2021) Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Xiao, M., Dai, S., Wang, L., Ni, X., Yan, W., Fang, Y., Corke, H., and Jiang, F. (2015) ‘Carboxymethyl modification of konjac glucomannan affects water binding properties’, Carbohydrate Polymers, 130, pp. 1–8

Xie, Y., Karki, C. B., Du, D., Li, H., Wang, J., Sobitan, A., Teng, S., Tang, Q., and Li, L. (2020) ‘Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2’, Frontiers in Molecular Biosciences, 7, pp. 1–14

Yan, H., Cai, B., Cheng, Y., and Guo, G. (2012) ‘Mechanism of lowering water activity of konjac glucomannan and its derivatives’, Food Hydrocolloids, 26(2), pp. 383–388

Zhao, Y., Jayachandran, M., and Xu, B. (2020) ‘In vivo antioxidant and anti-inflammatory effects of soluble dietary fiber Konjac glucomannan in type-2 diabetic rats’, International Journal of Biological Macromolecules, 159, pp. 1186–1196

Zheng, J., Yamada, Y., Fung, T. S., Huan, M., Chia, R., and Liu, D. X. (2018) ‘Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture’, Virolog, 513, pp. 65–74

Zheng, Q, Li, W., Liang, S., Zhang, H., Yang, H., Li, M., and Zhang, Y. (2019) ‘Effects of ultrasonic treatment on the molecular weight and anti-inflammatory activity of oxidized konjac glucomannan’, CYTA - Journal of Food, 17(1), pp. 1–10




DOI: https://doi.org/10.21776/ub.afssaae.2021.004.02.8

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Amira Hasnanuha Ulayya, Ahmad Zaki Mubarok, Widodo Widodo, Simon Bambang Widjanarko, Marlita Eklesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.